Если бы Максвелл не предсказал существование радиоволн, а Герц не открыл их на практике, наша действительность была бы совсем другой. Мы не могли бы быстро обмениваться информацией при помощи радио и мобильных телефонов, исследовать далёкие планеты и звёзды с помощью радиотелескопов, наблюдать за самолётами, кораблями и другими объектами с помощью радиолокаторов.

Каким же образом радиоволны помогают нам в этом?

Источники радиоволн

Источниками радиоволн в природе являются молнии – гигантские электрические искровые разряды в атмосфере, сила тока в которых может достигать 300 тысяч ампер, а напряжение – миллиарда вольт. Молнии мы наблюдаем во время грозы. Кстати, они возникают не только на Земле. Вспышки молний были обнаружены на Венере, Сатурне, Юпитере, Уране и других планетах.

Практически все космические тела (звёзды, планеты, астероиды, кометы и др.) также являются естественными источниками радиоволн.

В радиовещании, радиолокации, спутниках связи, стационарной и мобильной связи, различных системах навигации применяются радиоволны, полученные искусственным путём. Источником таких волн служат высокочастотные генераторы электромагнитных колебаний, энергия которых передаётся в пространство с помощью передающих антенн.

Свойства радиоволн

Радиоволны – это электромагнитные волны, частота которых находится в интервале от 3 кГц до 300 ГГц, а длина - от 100 км до 1 мм соответственно. Распространяясь в среде, они подчиняются определённым законам. При переходе из одной среды в другую наблюдается их отражение и преломление. Присущи им и явления дифракции и интерференции.

Дифракция , или огибание, происходит, если на пути радиоволн встречаются препятствия, размеры которых меньше длины радиоволны. Если же их размеры оказываются бόльшими, то радиоволны отражаются от них. Препятствия могут иметь искусственное (сооружения) или природное (деревья, облака) происхождение.

Отражаются радиоволны и от земной поверхности. Причём, поверхность океана отражает их примерно на 50% сильнее, чем сýша.

Если препятствие является проводником электрического тока, то какую-то часть своей энергии радиоволны отдают ему, а в проводнике создаётся электрический ток. Часть энергии расходуется на возбуждение электротоков на поверхности Земли. Кроме того, радиоволны расходятся от антенны кругами в разные стороны, подобно волнам от брошенного в воду камешка. По этой причине радиоволны со временем теряют энергию и затухают. И чем дальше от источника находится приёмник радиоволн, тем слабее сигнал, дошедший до него.

Интерференция, или наложение, вызывает взаимное усиление или ослабление радиоволн.

Радиоволны распространяются в пространстве со скоростью, равной скорости света (кстати, свет – это тоже электромагнитная волна).

Как и любые электромагнитные волны, радиоволны характеризуются длиной и частотой волны. С длиной волны частота связана соотношением:

f = c/ λ ,

где f – частота волны;

λ - длина волны;

c - скорость света.

Как видим, чем больше длина волны, тем меньше её частота.

Радиоволны разбиваются на следующие диапазоны : сверхдлинные, длинные, средние, короткие, ультракороткие, миллиметровые и децимиллиметровые волны.

Распространение радиоволн

Радиоволны разной длины распространяются в пространстве не одинаково.

Сверхдлинные волны (длина волны от 10 км и более) легко огибают большие препятствия вблизи поверхности Земли и очень слабо поглощаются ею, поэтому энергии они теряют меньше других радиоволн. Следовательно, затухают они также гораздо медленнее. Поэтому в пространстве такие волны распространяются на расстояния до нескольких тысяч километров. Глубина их проникновения в среду очень велика, и их используют для связи с подводными лодками, находящимися на большой глубине, а также для различных исследований в геологии, археологии и инженерном деле. Способность сверхдлинных волн легко огибать Землю позволяет исследовать с их помощью земную атмосферу.

Длинные , или километровые , волны (от 1 км до 10 км, частота 300 кГц – 30 кГц) также подвергаются дифракции, поэтому способны распространяться на расстояния до 2 000 км.

Средние , или гектометровые , волны (от 100 м до 1 км, частота 3000 кГц – 300 кГц) хуже огибают препятствия на поверхности Земли, сильнее поглощаются, поэтому гораздо быстрее затухают. Они распространяются на расстояния до 1 000 км.

Короткие волны ведут себя иначе. Если мы настроим автомобильный радиоприёмник в городе на короткую радиоволну и начнём двигаться, то по мере удаления от города приём радиосигнала будет всё хуже, а на расстоянии примерно 250 км он прекратится совсем. Однако спустя некоторое время радиотрансляция возобновится. Почему так происходит?

Всё дело в том, что радиоволны короткого диапазона (от 10 м до 100 м, частота 30 МГц – 3 МГц) у поверхности Земли затухают очень быстро. Однако волны, уходящие под большим углом к горизонту, отражаются от верхнего слоя атмосферы – ионосферы, и возвращаются обратно, оставляя позади себя сотни километров «мертвой зоны». Далее эти волны отражаются уже от земной поверхности и снова направляются к ионосфере. Многократно отражаясь, они способны несколько раз обогнуть земной шар. Чем короче волна, тем больше угол отражения от ионосферы. Но ночью ионосфера теряет отражательную способность, поэтому в тёмное время суток связь на коротких волнах хуже.

А ультракороткие волны (метровые, дециметровые, сантиметровые с длиной волны короче 10 м), не могут отражаться от ионосферы. Распространяясь прямолинейно, они пронизывают её и уходят выше. Это их свойство используют для определения координат воздушных объектов: самолётов, стай птиц, уровня и плотности облаков и др. Но и огибать земную поверхность ультракороткие волны тоже не могут. Из-за того что они распространяются в пределах прямой видимости, их применяют для радиосвязи на расстоянии 150 – 300 км.

По своим свойствам ультракороткие волны близки к световым волнам. Но световые волны можно собрать в пучок и направить его в нужное место. Так устроены прожектор и фонарик. Точно так же поступают и с ультракороткими волнами. Их собирают специальными зеркалами-антеннами и узкий пучок посылают в нужном направлении, что особенно важно, например, в радиолокации или спутниковой связи.

Миллиметровые волны (от 1 см до 1 мм), самые короткие волны радиодиапазона, схожи с ультракороткими волнами. Они также распространяются прямолинейно. Но серьёзной помехой для них являются атмосферные осадки, туман, облака. Кроме радиоастрономии, высокоскоростной радиорелейной связи они нашли применение в СВЧ технике, используемой в медицине и в быту.

Субмиллиметровые , или децимиллиметровые, волны (от 1 мм до 0,1 мм) по международной классификации также относятся к радиоволнам. В природных условиях они почти не существуют. В энергии спектра Солнца занимают ничтожно малую долю. Поверхности Земли не достигают, так как поглощаются парами воды и молекулами кислорода, находящимися в атмосфере. Созданные искусственными источниками, применяются в космической связи, для исследования атмосфер Земли и других планет. Высокая степень безопасности этих волн для организма человека позволяет применять их в медицине для сканирования органов.

Субмиллиметровые волны называют «волнами будущего». Вполне возможно, что они дадут учёным возможность изучать строение молекул веществ совершенно новым способом, а в будущем, может быть, даже позволят управлять молекулярными процессами.

Как видим, каждый диапазон радиоволн применяется там, где особенности его распространения используются с максимальной пользой.

В учебниках по физике приведены заумные формулы на тему диапазона радиоволн, которые порой не до конца понятны даже людям со специальным образованием и опытом работы. В статье постараемся разобраться с сутью, не прибегая к сложностям. Первым, кто обнаружил радиоволны, был Никола Тесла. В своем времени, где отсутствовало высокотехнологичное оборудование, Тесла не до конца понимал, что это за явление, которое он впоследствии назвал эфиром. Проводник с переменным электрическим током является началом радиоволны.

Источники радиоволн

К природным источникам радиоволн относятся астрономические объекты и молнии. Искусственным излучателем радиоволн является электрический проводник с движущимся внутри переменным электрическим током. Колебательная энергия высокочастотного генератора распространяется в окружающее пространство посредством радиоантенны. Первым рабочим источником радиоволн был радиопередатчик-радиоприёмник Попова. В этом устройстве функцию выполнял высоковольтный накопитель, подключенный на антенну − вибратор Герца. Созданные искусственным способом радиоволны применяются для стационарной и мобильной радиолокации, радиовещания, радиосвязи, спутников связи, навигационных и компьютерных систем.

Диапазон радиоволн

Применяемые в радиосвязи волны находятся в диапазоне частот 30 кГц − 3000 ГГц. Исходя из длины и частоты волны, особенностей распространения, диапазон радиоволн подразделяется на 10 поддиапазонов:

  1. СДВ - сверхдлинные.
  2. ДВ - длинные.
  3. СВ - средние.
  4. КВ - короткие.
  5. УКВ - ультракороткие.
  6. МВ - метровые.
  7. ДМВ - дециметровые.
  8. СМВ - сантиметровые.
  9. ММВ - миллиметровые.
  10. СММВ - субмиллиметровые

Диапазон частот радиоволн

Спектр радиоволн условно поделен на участки. В зависимости от частоты и длины радиоволны подразделяются на 12 поддиапазонов. Диапазон частот радиоволн взаимосвязан с частотой переменного тока сигнала. радиоволн в международном регламенте радиосвязи представлены 12 наименованиями:


При увеличении частоты радиоволны ее длина уменьшается, при уменьшении частоты радиоволны - увеличивается. Распространение в зависимости от своей длины - это важнейшее свойство радиоволны.

Распространение радиоволн 300 МГц − 300 ГГц называют сверхвысокими СВЧ вследствие их довольно высокой частоты. Даже поддиапазоны очень обширны, поэтому они, в свою очередь, поделены на промежутки, в которые входят определенные диапазоны телевизионные и радиовещательные, для морской и космической связи, наземной и авиационной, для радиолокации и радионавигации, для передачи данных медицины и так далее. Несмотря на то что весь диапазон радиоволн разбит на области, обозначенные границы между ними являются условными. Участки следуют друг за другом непрерывно, переходя один в другой, а иногда и перекрываются.

Особенности распространения радиоволны

Распространение радиоволн - это передача энергии переменным электромагнитным полем из одного участка пространства в другой. В вакууме радиоволна распространяются со При воздействии окружающей среды на радиоволны распространение радиоволн может быть затруднено. Это проявляется в искажении сигналов, изменении направления распространения, замедлении фазовой и групповой скоростях.

Каждая из разновидностей волн применяется по-разному. Длинные лучше могут обходить преграды. Это означает, что диапазон радиоволн может распространяться по плоскости земли и воды. Применение длинных волн широко распространено в подводных и морских суднах, что позволяет быть на связи в любой точке местонахождения в море. На в шестьсот метров с частотой пятьсот килогерц настроены приемники всех маяков и спасательные станций.

Распространение радиоволн в различных диапазонах зависит от их частоты. Чем меньше длина и выше частота, тем прямее будет путь волны. Соответственно, чем меньше ее частота и больше длина, тем она более способна огибать преграды. Каждый диапазон длин радиоволн обладает своими особенностями распространения, однако на границе соседних диапазонов резкого изменения отличительных признаков не наблюдается.

Характеристика распространения

Сверхдлинные и длинные волны огибают поверхность планеты, распространяясь поверхностными лучами на тысячи километров.

Средние волны подвержены более сильному поглощению, поэтому способны преодолевать расстояние лишь 500-1500 километров. При уплотнении ионосферы в данном диапазоне возможна передача сигнала пространственным лучом, который обеспечивает связь на несколько тысяч километров.

Короткие волны распространяются лишь на близкие расстояния вследствие поглощения их энергии поверхностью планеты. Пространственные же способны многократно отражаться от земной поверхности и ионосферы, преодолевать большие расстояния, осуществляя передачу информации.

Сверхкороткие способны передавать большой объем информации. Радиоволны этого диапазона проникают сквозь ионосферу в космос, поэтому для целей наземной связи практически непригодны. Поверхностные волны этих диапазонов излучаются прямолинейно, не огибая поверхность планеты.

В оптических диапазонах возможна передача гигантских объемов информации. Чаще всего для связи используется третий диапазон оптических волн. В атмосфере Земли они подвержены затуханию, поэтому в реальности передают сигнал на расстояние до 5 км. Зато использование подобных систем связи избавляет от необходимости получать разрешения от инспекций по электросвязи.

Принцип модуляции

Для того чтобы передать информацию, радиоволну нужно модулировать сигналом. Передатчик испускает модулированные радиоволны, то есть измененные. Короткие, средние и длинные волны имеют амплитудную модуляцию, поэтому они обозначаются как АМ. Перед модуляцией несущая волна движется с постоянной амплитудой. Амплитудная модуляция для передачи изменяет ее по амплитуде, соответственно напряжения сигнала. Амплитуда радиоволны изменяется прямо пропорционально напряжению сигнала. Ультракороткие волны имеют частотную модуляцию, поэтому они обозначаются как ЧМ. накладывает дополнительную частоту, которая несет информацию. Для передачи сигнала на расстояние его нужно промодулировать более высокочастотным сигналом. Для принятия сигнала нужно отделить его от поднесущей волны. При частотной модуляции помех создается меньше, однако радиостанция вынуждена вещать на УКВ.

Факторы, влияющие на качество и эффективность радиоволн

На качество и эффективность приема радиоволн влияет метод направленного излучения. Примером может послужить спутниковая антенна, которая направляет излучение в точку нахождения установленного приемного датчика. Этот метод позволил существенно продвинуться в области радиоастрономии и сделать множество открытий в науке. Он открыл возможности создания спутникового вещания, беспроводным методом и многое другое. Выяснилось, что радиоволны способны излучать Солнце, многие планеты, находящиеся вне нашей Солнечной системы, а также космические туманности и некоторые звезды. Предполагается, что за пределами нашей галактики существуют объекты, обладающие мощными радиоизлучениями.

На дальность радиоволны, распространение радиоволн оказывают влияние не только солнечное излучение, но и метеоусловия. Так, метровые волны, по сути, не зависят от метеоусловий. А дальность распространения сантиметровых сильно зависит от метеоусловий. Происходит из-за того, что водной среде во время дождя или при повышенном уровне влажности в воздухе короткие волны рассеиваются или поглощаются.

Также на их качество влияют и препятствия, оказывающиеся на пути. В такие моменты происходит замирание сигнала, при этом значительно ухудшается слышимость или вообще пропадает на несколько мгновений и более. Примером может послужить реакция телевизора на пролетающий самолет, когда мигает изображение и появляются белые полосы. Это происходит за счет того, что волна отражается от самолета и проходит мимо антенны телевизора. Такие явления с телевизорами и радиопередатчиками чаще происходят в городах, поскольку диапазон радиоволн отражается на зданиях, высотных башнях, увеличивая путь волны.

1. Что такое радиоволны? 3

1.1. Радиоволны 3

1.2. Распространение радиоволн 4

1.3. Как распространяются радиоволны 6

2. Диапазон 10

2.1. Динамический диапазон 12

2.2. Распределение спектра 12

3. Источники 15

3.1.Радиоизлучение Солнца 15

3.2.Галактические радиоисточники 15

3.3.Отождествление источников 16

3.4.Фоновое излучение 17

3.5.Радиоизлучение планет 17

3.6.Излучение водорода 17

4. Открытие и применение

Библиография

1.Что такое радиоволны

1.1.Радиоолны

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т.п.).
Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.
Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей. Измеряется частота в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны. Длина волны (в метрах) рассчитывается по формуле: или примерно где ¦ – частота электромагнитного излучения в МГц.

Из формулы видно, что, например, частоте 1 МГц соответствует длина волны ок. 300 м. С увеличением частоты длина волны уменьшается, с уменьшением – догадайтесь сами. В дальнейшем мы убедимся, что знание длины волны очень важно при выборе антенны для радиосистемы, так как от нее напрямую зависит длина антенны. Электромагнитные волны свободно проходят через воздух или космическое пространство (вакуум). Но если на пути волны встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от поверхности. Кстати, на этом основано применение электромагнитных волн в радиолокации. Еще одним полезным свойством электромагнитных волн (впрочем, как и всяких других волн) является их способность огибать тела на своем пути. Но это возможно лишь в том случае, когда размеры тела меньше, чем длина волны, или сравнимы с ней. Например, чтобы обнаружить самолет, длина радиоволны локатора должна быть меньше его геометрических размеров (менее 10 м). Если же тело больше, чем длина волны, оно может отразить ее. Но может и не отразить – вспомните американский самолет-невидимку «Stealth».
Энергия, которую несут электромагнитные волны, зависит от мощности генератора (излучателя) и расстояния до него. По научному это звучит так: поток энергии, приходящийся на единицу площади, прямо пропорционален мощности излучения и обратно пропорционален квадрату расстояния до излучателя. Это значит, что дальность связи зависит от мощности передатчика, но в гораздо большей степени от расстояния до него. Например, поток энергии электромагнитного излучения Солнца на поверхность Земли достигает 1 киловатта на квадратный метр, а поток энергии средневолновой вещательной радиостанции – всего тысячные и даже миллионные доли ватта на квадратный метр.

1.2.Распространение радиоволн

Самый простой случай - это распространение радио волны в свободном пространстве. Уже на небольшом расстоянии от радиопередатчика его можно считать точкой. А если так, то фронт радиоволны можно считать сферическим. Если мы проведем мысленно несколько сфер, окружающих радиопередатчик, то ясно, что при отсутствии поглощения энергия, проходящая через сферы, будет оставаться неизменной. Ну, а поверхность сферы пропорциональна квадрату радиуса. Значит, интенсивность волны, т. е. энергия, приходящаяся на единицу площади в единицу времени, будет падать по мере удаления от источника обратно пропорционально квадрату расстояния.

Конечно, это важное правило применимо в том случае, если не приняты специальные меры для того, чтобы создать узконаправленный поток радиоволн.

Существуют различные технические приемы для создания направленных радиолучей. Один из способов решения этой задачи состоит в использовании правильной решетки антенн. Антенны должны быть расположены так, чтобы посылаемые ими волны отправлялись в нужном направлении “горб к горбу”. Для этой же цели используются зеркала разной формы.

Радиоволны, путешествующие в космосе, будут отклоняться от прямолинейного направления - отражаться, рассеиваться, преломляться - в том случае, если на их пути встретятся препятствия, соизмеримые с длиной волны и даже несколько меньшие.

Наибольший интерес представляет для нас поведение волн, идущих вблизи с земной поверхности. В каждом отдельном случаи картина может быть весьма своеобразной, в зависимости от того, какова длина волны.

Кардинальную роль играют электрические свойства земли и атмосферы. Если поверхность способна проводить ток, то она “не отпускает” от себя радиоволны. Электрические силовые линии электромагнитного поля подходит к металлу (шире - к любому проводнику) под прямым углом.

Теперь представьте себе, что радиопередача происходит вблизи морской поверхности. Морская вода содержит растворенные соли, т. е. является электролитом. Морская вода - превосходный проводник тока. Поэтому она “держит” радиоволну, заставляет ее двигаться вдоль поверхности моря.

Но и равнинная, а так же лесистая местности являются хорошими проводниками для токов не слишком высокой частоты. Иными словами, для длинных волн лес равнина ведут себя как металл.

Поэтому длинные волны удерживаются всей земной поверхностью и способна обогнуть земной шар. Кстати говоря, этим способом можно определить скорость радиоволн. Радиотехникам известно, что на то, чтобы обогнуть земной шар, радиоволна затрачивает 0.13 с. А как же горы? Ну что же, для длинных волн они не столь уж высоки, и радиоволна длиной в километр более или менее способна обогнуть гору.

Что же касается коротких волн, то возможность дальнего радиоприема на этих волнах обязана наличию над Землей ионосферы. Солнечные лучи обладают способностью разрушать молекулы воздуха в верхних областях атмосферы. Молекулы превращаются в ионы и на расстояниях 100- 300 км от земли образуют несколько заряженных слоев. Так что для коротких волн пространство, в котором движется волна, - это слой диэлектрика, зажатого между двумя проводящими поверхностями.

Поскольку равнинная и лесистая поверхности не являются хорошими проводниками для коротких волн то они не способны их удержать. Короткие волны отправляются в свободное путешествие, но натыкаются на ионосферу, отражающую их, как поверхность металла.

Ионизация ионосферы не однородна и, конечно, различна днем и ночью. По этому пути коротких радиоволн могут быть самыми различными. Они могут добраться до вашего радиоприемника и после многократных отражений с Землей и ионосферой. Судьба короткой волны зависит от того, под каким углом попадает она на ионосферный слой. Если этот угол близок к прямому, то отражение не произойдет и волна уйдет в мировое пространство. Но чаще имеет место полное отражение и волна возвращается на Землю.

Для ультракоротких волн ионосфера прозрачна. Поэтому на этих длинах волн возможен радиоприем в пределах прямой видимости или с помощью спутников. Направляя волну на спутник, мы можем ловить отраженные от него сигналы на огромных расстояниях.

Спутники открыли новую эпоху в техники радиосвязи, обеспечив возможность радиоприема и телевизионного приема на ультракоротких волнах.

Интересные возможности предоставляет передача на сантиметровых, миллиметровых и субмиллиметровых волнах. Волны этой длины могут поглощаться атмосферой. Но, оказывается, имеются ”окна”, и, подобрав нужным образом длину волны, можно использовать волны, залезающие в оптический диапазон. Ну, а достоинства этих волн нам известны: в малой волновой интервал можно “вложить” огромное число не перекрывающихся передач.

1.3.Как распространяются радиоволны

Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.
Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота). Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.
Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи.
Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.
Еще в 1902 английский математик Оливер Хевисайд (Oliver Heaviside) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой. Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.

Распространение длинных и коротких волн .

Отразившись от ионосферы, короткие волны возвращаются к Земле, оставив под собой сотни километров «мертвой зоны». Пропутешествовав к ионосфере и обратно, волна не «успокаивается», а отражается от поверхности Земли и вновь устремляется к ионосфере, где опять отражается и т. д. Так, многократно отражаясь, радиоволна может несколько раз обогнуть земной шар.
Установлено, что высота отражения зависит в первую очередь от длины волны. Чем короче волна, тем на большей высоте происходит ее отражение и, следовательно, больше «мертвая зона». Эта зависимость верна лишь для коротковолновой части спектра (примерно до 25–30 МГц). Для более коротких волн ионосфера прозрачна. Волны пронизывают ее насквозь и уходят в космическое пространство.
Из рисунка видно, что отражение зависит не только от частоты, но и от времени суток. Это связано с тем, что ионосфера ионизируется солнечным излучением и с наступлением темноты постепенно теряет свою отражательную способность. Степень ионизации также зависит от солнечной активности, которая меняется в течение года и из года в год по семилетнему циклу.

Отражательные слои ионосферы и распространение коротких волн
в зависимости от частоты и времени суток .

Распространение коротких и ультракоротких волн .

Радиоволны УКВ диапазона по свойствам в большей степени напоминают световые лучи. Они практически не отражаются от ионосферы, очень незначительно огибают земную поверхность и распространяются в пределах прямой видимости. Поэтому дальность действия ультракоротких волн невелика. Но в этом есть определенное преимущество для радиосвязи. Поскольку в диапазоне УКВ волны распространяются в пределах прямой видимости, то можно располагать радиостанции на расстоянии 150–200 км друг от друга без взаимного влияния. А это позволяет многократно использовать одну и ту же частоту соседним станциям.
Свойства радиоволн диапазонов ДЦВ и 800 МГц еще более близки к световым лучам и потому обладают еще одним интересным и важным свойством. Вспомним, как устроен фонарик. Свет от лампочки, расположенной в фокусе рефлектора, собирается в узкий пучок лучей, который можно
послать в любом направлении. Примерно то же самое можно проделать и с высокочастотными радиоволнами. Можно их собирать зеркалами-антеннами и посылать узкими пучками. Для низкочастотных волн такую антенну построить невозможно, так как слишком велики были бы ее размеры (диаметр зеркала должен быть намного больше, чем длина волны). Возможность направленного излучения волн позволяет повысить эффективность системы связи.
Связано это с тем, что узкий луч обеспечивает меньшее рассеивание энергии в побочных направлениях, что позволяет применять менее мощные передатчики для достижения заданной дальности связи. Направленное излучение создает меньше помех другим системам связи, находящихся не в створе луча.
При приеме радиоволн также могут использоваться достоинства направленного излучения. Например, многие знакомы с параболическими спутниковыми антеннами, фокусирующими излучение спутникового передатчика в точку, где установлен приемный датчик. Применение направленных приемных антенн в радиоастрономии позволило сделать множество фундаментальных научных открытий. Возможность фокусирования высокочастотных радиоволн обеспечила их широкое применение в радиолокации, радиорелейной связи, спутниковом вещании, беспроводной передаче данных и т.п.

Параболические направленные антенны .

Необходимо отметить, что с уменьшением длины волны возрастает их затухание и поглощение в атмосфере. В частности на распространение волн короче 1 см начинают влиять такие явления как туман, дождь, облака, которые могут стать серьезной помехой, сильно ограничивающей дальность связи.
Мы выяснили, что волны радиодиапазона обладают различными свойствами распространения, и каждый участок этого диапазона применяется там, где лучше всего могут быть использованы его преимущества.

2. Диапазон

С учётом особенностей распространения, генерации и (отчасти) излучения весь диапазон радиоволн принято делить на ряд меньших диапазонов: сверхдлинные волны, длинные волны, средние волны, короткие волны, метровые волны, дециметровые волны, сантиметровые волны, миллиметровые волны и субмиллиметровые волны (табл. 1). Деление радиочастот на диапазоны в радиосвязи установлено международным регламентом радиосвязи (табл. 2). Все это официальные, четко отграниченные участки спектра.
В то же время термин "диапазон" в зависимости от контекста может применяться для обозначения какого-то произвольного участка радиоволн/радиочастот (например - "любительский диапазон", "диапазон подвижной связи", "диапазон low band", "диапазон 2,4 ГГц" и т.п.)

Табл. 1. - Деление всего диапазона радиоволн на меньшие диапазоны.

Название поддиапазона

Длина волны, м

Частота колебаний, гц

Сверхдлинные волны

более 10 4 м

менее 3x10 4

Длинные волны

Средние волны

Короткие волны

Метровые волны

Дециметровые волны

Сантиметровые волны

3x10 10 -3x10 11

Миллиметровые волны

3x10 11 -6x10 12

Субмиллиметровые волны

- - - - - - - - - - - - - -

Табл. 2.1. - Диапазон радиочастот

Наименование диапазона

Границы диапазонов

основной термин

параллельный термин

1-й диапазон частот
2-й диапазон частот
3-й диапазон частот
4-й диапазон частот
5-й диапазон частот
6-й диапазон частот
7-й диапазон частот
8-й диапазон частот
9-й диапазон частот
10-й диапазон частот
11-й диапазон частот
12-й диапазон частот

Крайне низкие КНЧ
Сверхнизкие СНЧ
Инфранизкие ИНЧ
Очень низкие ОНЧ
Низкие частоты НЧ
Средние частоты СЧ
Высокие частоты ВЧ
Очень высокие ОВЧ
Ультравысокие УВЧ
Сверхвысокие СВЧ
Крайне высокие КВЧ
Гипервысокие ГВЧ

3-30 гц
30-300 гц
0,3-3 кгц
3-30 кгц
30-300 кгц
0,3-3 Мгц
3-30 Мгц
30-300 Мгц
0,3-3 Ггц
3-30 Ггц
30-300 Ггц
0,3-3 Тгц

Табл. 2.2. - Диапазон радиоволн

Наименование диапазона

Границы диапазонов

основной термин

параллельный термин

1-й диапазон частот
2-й диапазон частот
3-й диапазон частот
4-й диапазон частот
5-й диапазон частот
6-й диапазон частот
7-й диапазон частот
8-й диапазон частот
9-й диапазон частот
10-й диапазон частот
11-й диапазон частот
12-й диапазон частот

Декамегаметровые
Мегаметровые
Гектокилометровые
Мириаметровые
Километровые
Гектометровые
Декаметровые
Метровые
Дециметровые
Сантиметровые
Миллиметровые
Децимиллиметровые

100-10 мм
10-1 мм
1000-100 км
100-10 км
10-1 км
1-0,1 км
100-10 м
10-1 м
1-0,1 м
10-1 см
10-1 мм
1-0,1 мм

2.1. Динамический диапазон
Динамический диапазон радиоприемного устройства - это отношение максимально допустимого уровня принимаемого сигнала (нормируется уровнем нелинейных искажений) к минимально возможному уровню принимаемого сигнала (определяется чувствительностью устройства) выраженное в децибелах. Другими словами - это разность между максимальным и минимальным значениями уровней сигналов, при которых еще не наблюдается искажений. Причиной этих искажений является нелинейность усилительного тракта рассматриваемого устройства. Чем шире ДД, тем более сильные сигналы способно принимать устройство без искажений. Динамический диапазон шире у дорогих приемников, хотя сравнивать их по этому параметру практически невозможно, т.к. он очень редко указывается в характеристиках.

2.2. Распределение спектра

Радиоволны (радиочастоты), используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн. За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи. После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой. Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются. Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:

Диапазон
частот

Наименование диапазона
(сокращенное наименование)

Наименование
диапазона волн

Длина волны

Очень низкие частоты (ОНЧ)

Мириаметровые

Низкие частоты (НЧ)

Километровые

300–3000 кГц

Средние частоты (СЧ)

Гектометровые

Высокие частоты (ВЧ)

Декаметровые

Очень высокие частоты (ОВЧ)

Метровые

300–3000 МГц

Ультра высокие частоты (УВЧ)

Дециметровые

Сверхвысокие частоты (СВЧ)

Сантиметровые

Крайне высокие частоты (КВЧ)

Миллиметровые

300–3000 ГГц

Гипервысокие частоты (ГВЧ)

Децимиллиметровые

Но эти диапазоны весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты.

Пример распределения спектра между различными службами .
Эта разбивка довольно запутана, поэтому многие службы используют свою «внутреннюю» терминологию. Обычно при обозначении диапазонов выделенных для наземной подвижной связи используются следующие названия:

Термин

Диапазон
частот

Пояснения

Коротковолновый
диапазон (КВ)

Из-за особенностей распространения в
основном применяется для дальней связи.

25.6–30.1 МГц

Гражданский диапазон, в котором могут
пользоваться связью частные лица. В
разных странах на этом участке выделено от
40 до 80 фиксированных частот (каналов).


Непонятно почему, но в русском языке не
нашлось термина, определяющего данный
диапазон.

136–174 МГц

Наиболее распространенный диапазон
подвижной наземной связи.

400–512 МГц

Диапазон подвижной наземной связи.
Иногда не выделяют этот участок в
отдельный диапазон, а говорят УКВ,
подразумевая полосу частот от 136 до
512 МГц.

806–825 и
851–870 МГц

Традиционный «американский» диапазон;
широко используется подвижной связью в
США. У нас не получил особого
распространения.



Не надо путать официальные наименования диапазонов частот с названиями участков, выделенных для различных служб. Стоит отметить, что основные мировые производители оборудования для подвижной наземной связи выпускают модели, рассчитанные на работу в пределах именно этих участков.
В дальнейшем мы будем говорить о свойствах радиоволн применительно к их использованию в наземной подвижной радиосвязи.

3. Источники

3.1.Радиоизлучение Солнца. Зарегистрировано радиоизлучение Солнца с длиной волны от нескольких миллиметров до 30 м. Особенно сильно излучение в метровом диапазоне; оно рождается в верхних слоях атмосферы Солнца, в его короне, где температура порядка 1 млн. К. Коротковолновое излучение Солнца относительно слабо; оно выходит из хромосферы, расположенной над видимой поверхностью Солнца – фотосферой.

3.2.Галактические радиоисточники. Уже первые наблюдения Г.Ребера показали, что радиоизлучение Млечного Пути неоднородно – оно сильнее в направлении центра Галактики. Дальнейшие исследования подтвердили, что основные источники радиоволн относительно компактны; их называют точечными или дискретными. Зарегистрированы уже десятки тысяч таких источников.

Излучение космических радиоисточников бывает двух типов: тепловое и нетепловое (обычно синхротронное). Тепловое излучение рождается в горячем газе от случайного (теплового) движения заряженных частиц – электронов и протонов. Его интенсивность в широком диапазоне спектра почти постоянна, но на длинных волнах она быстро уменьшается. Такое излучение характерно для эмиссионных туманностей. Остальные источники имеют нетепловое излучение, интенсивность которого растет с увеличением длины волны. В этих источниках излучение возникает при движении очень быстрых электронов в магнитном поле. Скорости электронов близки к скорости света, и это не может быть следствием простого теплового движения. Для разгона электронов до таких скоростей в лаборатории используют специальные ускорители – синхротроны. Как это происходит в естественных условиях, не совсем ясно. Синхротронное излучение сильно поляризовано. Это позволяет обнаруживать его в космических источниках и по направлению поляризации определять ориентацию их магнитного поля. Таким методом исследованы межзвездные магнитные поля в нашей и соседних галактиках.

Одним из важнейших достижений радиоастрономии стало открытие активных процессов в ядрах галактик. Радионаблюдения указывали на это еще в 1950-е годы, но окончательное подтверждение появилось в 1962, когда с помощью 5-метрового оптического телескопа обсерватории Маунт-Паломар (США) были независимо обнаружены бурные процессы в ядре галактики М 82.

Другим важнейшим открытием радиоастрономии считаются квазары – очень далекие и активные внегалактические объекты. Вначале они казались рядовыми точечными источниками. Затем некоторые из них были отождествлены со слабыми звездами (отсюда название «квазар» – квазизвездный радиоисточник). Доплеровское смещение линий в их оптических спектрах указывает на то, что квазары удаляются от нас со скоростью, близкой к скорости света и, в соответствии с законом Хаббла, расстояния до них составляют миллиарды световых лет. Находясь на таких гигантских расстояниях, они заметны лишь потому, что излучают с огромной мощностью – порядка 10 41 Вт. Это значительно больше мощности излучения целой галактики, хотя размер области генерации энергии у квазаров существенно меньше размера галактик и порой не превосходит размера Солнечной системы. Загадка квазаров до сих пор не раскрыта.

3.3.Отождествление источников. Звезды – слабые источники радиоволн. Долгое время единственной звездой на «радионебе» было Солнце, и то лишь благодаря его близости. Но в 1970-х годах Р.Хелминг и К. Уэйд из Национальной радиоастрономической обсерватории США открыли радиоизлучение от газовых оболочек, сброшенных Новой Дельфина 1967 и Новой Змеи 1970. Затем они обнаружили радиоизлучение красного сверхгиганта Антареса и рентгеновского источника в Скорпионе.

В.Бааде и Р.Минковский из обсерваторий Маунт-Вилсон и Маунт-Паломар (США) отождествили многие яркие радиоисточники с оптическими объектами. Например, ярчайший источник в Лебеде оказался связан с очень далекой и слабой галактикой необычной формы, ставшей прототипом радиогалактик. Мощный радиоисточник в Тельце они отождествили с остатком взрыва сверхновой звезды, отмеченной в китайской летописи 1054. Мощный источник в Кассиопее также оказался остатком сверхновой, вспыхнувшей всего лет 300 назад, но не замеченной никем.

В 1967 Э.Хьюиш, Дж.Белл и их коллеги из Кембриджа (Англия) открыли необычные переменные радиоисточники – пульсары. Излучение каждого пульсара представляет строго периодическую последовательность импульсов; у открытых пульсаров периоды лежат в интервале от 0,0016 с до 5,1 с. Через 2 года У.Кокки, М.Дисней и Д.Тейлор обнаружили, что радиопульсар в Крабовидной туманности совпадает со слабой оптической звездой, которая, как и пульсар, изменяет свою яркость с периодом 1/30 с. Среди более 700 известных сейчас пульсаров еще только один – в созвездии Парусов (Vela) – демонстрирует оптические вспышки. Выяснилось, что феномен пульсара связан c нейтронными звездами, образовавшимися в результате гравитационного коллапса ядер массивных звезд. Имея диаметр около 15 км и массу как у Солнца, нейтронная звезда быстро вращается и как маяк периодически «освещает» Землю. Постепенно скорость вращения пульсара замедляется, период между импульсами возрастает, а их мощность падает. Иногда наблюдаются резкие сбои периода, когда у нейтронной звезды происходит перестройка структуры, называемая «звездотрясением».

3.4.Фоновое излучение. Кроме отождествленных и неотождествленных дискретных источников, наблюдается суммарный фон от миллионов далеких галактик и облаков межзвездного газа нашей Галактики. С повышением чувствительности и разрешающей способности радиотелескопов из этого фона удается выделить все больше дискретных источников.

3.5.Радиоизлучение планет. В 1956 К.Мейер из Военно-морской лаборатории США открыл излучение Венеры на волне 3 см. В 1955 Б.Бурке и К.Франклин из института Карнеги в Вашингтоне обнаружили короткие всплески радиоизлучения от Юпитера на волне 13,5 м. Дальнейшие исследования в Австралии показали, что всплески излучения от Юпитера приходят в те моменты, когда определенные зоны его поверхности обращены к Земле. В дециметровом диапазоне кроме теплового излучения наблюдалось и синхротронное, что указывало на наличие у Юпитера мощного магнитного поля, которое позже было действительно обнаружено космическими зондами.

Радиолокационные исследования планет позволяют точно определять их расстояние от Земли, скорость их суточного вращения и свойства поверхности. Радиолокация Венеры позволила изучить топографию ее поверхности, закрытой от оптических телескопов плотным облачным слоем.

3.6.Излучение водорода. Нейтральный атомарный водород – возможно, самый распространенный элемент в межзвездном пространстве. Он способен излучать радиолинию с длиной волны 21 см, которая была предсказана в 1944 нидерландским теоретиком Х. ван де Хюлстом и обнаружена в 1951 Х.Юэном и Э.Парселом из Гарвардского университета (США). Существование узкой линии в радиодиапазоне оказалось очень полезным: измеряя ее доплеровское смещение, можно очень точно определять лучевую скорость наблюдаемого облака газа. При этом приемная аппаратура радиотелескопа сканирует некоторый диапазон длин волн в районе линии 21 см и отмечает пики излучения. Каждый такой пик – это линия излучения водорода, смещенная по частоте из-за движения одного из облаков, попавших в поле зрения антенны телескопа.

Около 5% водорода в Галактике вследствие высокой температуры находится в ионизованном состоянии. Когда свободные электроны пролетают вблизи положительно заряженных ядер водорода – протонов, они испытывают притяжение, движутся ускоренно и при этом излучают электромагнитные кванты. Иногда, потеряв энергию, электрон оказывается захваченным на один из верхних уровней атома (т.е. происходит рекомбинация). Спускаясь затем каскадно на устойчивый нижний уровень, электрон также излучает кванты энергии. Такое излучение свободных и рекомбинирующих электронов наблюдается в радиодиапазоне от эмиссионных туманностей и позволяет обнаруживать их даже в тех случаях, когда оптическое излучение не может достичь Земли из-за поглощения в межзвездной пыли. Благодаря этому радиоастрономы смогли обнаружить практически все эмиссионные туманности в Галактике.

4. Открытие и применение

Открытие радиоволн дало человечеству массу возможностей. Среди них: радио, телевидение, радары, радиотелескопы и беспроводные средства связи. Всё это облегчало нам жизнь. С помощью радио люди всегда могут попросить помощи у спасателей, корабли и самолёты подать сигнал бедствия, и можно узнать происходящие события в мире.

Гипотезу о существовании радиоволн выдвинул английский учёный Джеймс Максвелл на основании изучения работ Фарадея по электричеству. Для выдвижения гипотезы о возможности возникновения электромагнитных волн Максвелл имел следующие основания. Открытие индукционного тока Фарадеем. Максвелл объяснил появление индукционного тока возникновением вихревого электрического поля при любом изменении магнитного поля. Далее он предложил, что электрическое поле обладает такими же свойствами: при любом изменении электрического поля в окружающем пространстве возникает вихревое электрическое поле.

Однажды начавшийся процесс взаимного порождения магнитного и электрического поля должен непрерывно продолжаться и захватывать Схема Радиоволны.

всё новые и новые области в окружающем пространстве. Процесс взаимопорождения электрических и магнитных полей происходит во взаимно перпендикулярных плоскостях. Электрические и магнитные поля могут существовать в веществе и в вакууме, и могут распространяться в вакууме. Условием возникновения электромагнитных волн является ускоренное движение электрических зарядов. Так, изменение магнитного поля происходит при изменении тока в проводнике, а изменение тока происходит при изменении скорости зарядов. Следовательно, электромагнитные волны должны возникать при ускоренном движении электромагнитных зарядов.

Но вот создание электромагнитных волн опытным путём принадлежит физику Герцу. Для этого Герц использовал высокочастотный искровой разрядник (Вибратор). Произвёл этот опыт Герц в 1888 г. Состоял вибратор из двух стержней, разделённых искровым промежутком. Экспериментировал Герц с волнами частотой 100000000 Гц. Вычислив собственную частоту электромагнитных колебаний вибратора, Герц смог определить скорость электромагнитной волны по формуле υ=λν.Она оказалась приближенно равна скорости света: с=300000 км/с. Опыт Герца блестяще подтвердили предсказания Максвелла. Для возбуждения колебаний вибратор подключался к индуктору. Когда напряжение на искровом промежутке достигало пробивного значения, возникла искра, которая закорачивала обе половинки вибратора. В результате возникали свободные затухающие колебания, которые продолжались до тех пор, пока искра не гасла. А для того чтобы возникающий при колебаниях высокочастотный ток не ответвлялся в обмотку индуктора, между вибратором и индуктором включались дроссели (катушки с большой индуктивностью). После погасания искры вибратор снова заряжался от индуктора, и весь процесс повторялся вновь. Таким образом, вибратор Герца возбуждал ряд цугов слабо затухающих волн.

И во время этих колебаний устанавливалась стоячая волна тока и напряжения. Сила тока I была максимальной (пучность) в середине вибратора и обращалась в ноль на его концах. Напряжение U в середине вибратора имело узел, на концах – пучности. Опыты Герца были продолжены П. Н. Лебедевым в 1894 г. П.Н. Лебедев открыл двойное преломление волн в кристалле. Также радиоволны обладают всеми основными свойствами волн.

Электромагнитные волны в зависимости от длины волны (или частоты колебаний

Несмотря на то, что свойства электромагнитных волн различных диапазонов могут резко отличаться друг от друга, все они имеют единую волновую природу и описываются системой уравнений Максвелла. Величины и в электромагнитной волне в простейшем случае меняются по гармоническому закону. Уравнениями плоской электромагнитной волны, распространяющейся в направлении Z, являются:

где n-частота,

Электромагнитные волны являются поперечными волнами, т.е. колебания векторов напряженности переменного электрического и индукции переменного магнитного поля взаимно перпендикулярны и лежат в плоскости, перпендикулярной к вектору скорости распространения волны. Векторы и образуют правовинтовую систему: из конца вектора поворот от к на наименьший угол виден происходящем против часовой стрелки (рис. 1).

На рис. 2 показано распределение векторов и электромагнитной волны вдоль оси OZ в данный момент времени t.

Из формулы (1) следует, что вектора и в электромагнитной волне колеблются в одинаковой фазе (синфазно), т.е. они одновременно обращаются в нуль и одновременно достигают максимальных значений.

Основываясь на том, что электромагнитная волна является поперечной, возможно наблюдение явлений, связанных с определенной ориентацией векторов и в пространстве. Благодаря этим свойствам возможно использовать электромагнитные волны в радиосвязи.

Первым кто применил радиоволны для беспроводной связи, был русский физик А. Попов. 7 мая 1895 г. Попов с помощью электромагнитных волн передал на расстояние 250 м сообщение (были переданы слова «Генрих Герц»). Для приёма сообщений Попов использовал способность металлических порошков слипаться под влиянием высокочастотных электрических колебаний и тем самым повышать свою электропроводность. Передатчиком служила заземлённая антенна А. В схеме передатчика В – источник высокого переменного напряжения, питаемый батареей Е. При замыкании ключа К в искровом промежутке образуется искра, представляющая собой колебательный процесс, вследствие чего антенна Передатчик и приёмник..

А начинает излучать радиоволны. Эти волны, достигая антенны А’ приёмной станции, возбуждают электромагнитные колебания цепи, содержащей заземлённую антенну и когерер Т. Сопротивление когерера резко уменьшается, вследствие чего замыкается цепь батареи Е’, в которой находится электромагнитное реле, притягивающее молоточек F. При этом в точке О замыкается цепь более мощной батареи Е”, действующей на пишущий аппарат LM. В тоже время молоточек D ударяет по когереру Т и размыкает цепь батареи Е’ (для приёма следующего сигнала).

Это радио стало прародителем не только для современного радио, но и для телевизоров, радиотелескопов, мобильных телефонов и для многих других вещей без которых люди не могут представить сегодняшнюю свою жизнь.

Современные радиоприёмники совсем непохожи на своего прародителя, но принцип действия остался тот же, что и в приёмники Попова. Современный приёмник так - же имеет антенну, в которой приходящая волна вызывает очень слабые магнитные колебания. Как и в приёмнике Попова, энергия этих колебаний не используется непосредственно для приёма. Слабые сигналы лишь управляют источниками энергии, питающими последующие цепи. Сейчас такое управление осуществляется с помощью полупроводниковых приборов.

В1899 году была обнаружена возможность приёма сигналов с помощью телефона. В начале 1900 года радиосвязь была успешно использована во время спасательных работ в Финском заливе. При участии Попова началось внедрение радиосвязи на флоте и в армии России.

За границей усовершенствованием подобных приборов занималась фирма, организованная итальянским учёным Маркони. Опыты, поставленные в широком масштабе, позволили осуществить радиотелеграфную передачу через атлантический океан.

Важнейшим этапом развития радиосвязи было создание в 1913 году генератора незатухающих электромагнитных колебаний.

Кроме передачи телеграфных сигналов, состоящих из коротких и более продолжительных импульсов электромагнитных волн, стала возможной надёжная и высококачественная радиотелефонная связь – передача речи и музыки с помощью электромагнитных волн.

При радиотелефонной связи колебания давления воздуха в звуковой волне превращаются с помощью микрофона в электрические колебания той же формы. Казалось бы, если эти колебания усилить и подать в антенну, то можно будет передавать на расстояния речь и музыку с помощью электромагнитных волн. Однако в действительности такой способ передачи неосуществим.

Дело в том что, колебания звуковой частоты представляют собой сравнительно медленные колебания, а электромагнитные волны низкой

(звуковой) частоты почти совсем не излучаются.

Для передачи этих волн на большие расстояния их необходимо преобразовать в колебания высокой частоты, но так чтобы не испортить информацию которую они несут. Процесс преобразования электромагнитных колебаний низкой частоты в колебания высокой частоты называется модуляцией. Для преобразования звуковых волн используется амплитудная модуляция.

В процессе модуляции происходит наложение амплитуды низкочастотных сигналов на высокочастотный сигнал.

Модуляция – медленный процесс. Это такие изменения в высокочастотной колебательной системе, при которых она успевает совершить очень много высокочастотных колебаний, прежде чем их амплитуда измениться заметным образом.

Без модуляции нет ни телеграфной, ни телефонной, ни телевизионной передачи.

Для осуществления амплитудной модуляции электромагнитных колебаний высокой частоты в электрическую цепь транзисторного генератора последовательно с колебательным контуром включают катушку трансформатора. На вторую катушку трансформатора подаётся переменное напряжение звуковой частоты, например, с выхода микрофона после необходимого усиления. Переменный ток во второй катушке трансформатора вызывает появление напряжения на концах первой катушке трансформатора.

Переменное напряжение звуковой частоты складывается с постоянным напряжением источника тока; изменения напряжения между эмиттером и коллектором транзистора приводят к изменениям со звуковой частотой амплитуды колебаний силы тока высокой частоты в контуре генератора. Такие колебания высокой частоты называются амплитудно-модулированными.

С колебательным контуром генератора индуктивно связана антенна радиопередатчика. Вынужденные колебания тока высокой частоты, происходящие в антенне, создают электромагнитные волны.

Электромагнитные волны, излучённые антенной радиопередатчика, вызывают вынужденные колебания свободных электронов в любом проводнике. Напряжение между концами проводника, в котором электромагнитная волна возбуждает вынужденные колебания электрического тока, пропорционально длине проводника. Поэтому для приёма электромагнитных волн в простейшем детекторном радиоприёмнике применяется длинный провод – приёмная антенна (1). Для того чтобы слушать только одну радиопередачу, колебания напряжения не направляют непосредственно на вход усилителя, а сначала подают на колебательный контур (2) с изменяющейся собственной частотой колебаний. Изменение собственной частоты колебаний в контуре приёмника производится обычно изменением электроёмкости переменного конденсатора. При совпадении частоты вынужденных колебаний в антенне с собственной частотой контура наступает резонанс, при этом амплитуда вынужденных колебаний напряжения на обкладках конденсатора контура достигает максимального значения. Таким образом, из большого числа электромагнитных колебаний, возбуждаемых в антенне, выделяются колебания нужной частоты.

С колебательного контура приёмника модулированные колебания высокой частоты поступают на детектор (3). В качестве детектора можно использовать полупроводниковый диод, пропускающий переменный ток высокой частоты только в одном направлении. В течении каждого полупериода высокой частоты импульсы тока заряжают конденсатор (4), вместе с тем конденсатор медленно разряжается через резистор (5). Если значения электроёмкости конденсатора и электрического сопротивления резистора выбраны правильно, то через резистор будет протекать ток, изменяющийся во времени со звуковой частотой, использованной при модуляции колебаний в радиопередатчике. Для преобразования электрических колебаний в звуковые переменное напряжение звуковой частоты подаётся на телефон (6).

Детекторный радиоприёмник весьма несовершенен. Он обладает очень низкой чувствительностью и поэтому может успешно принимать радиопередачи только от мощных радиостанций или от близкорасположенных радиопередатчиков.

Для повышения чувствительности в современных радиоприёмниках сигнал с колебательного контура поступает на вход усилителя высокой частоты (УВЧ), а с выхода усилителя высокочастотные электрические колебания поступают на детектор. Для увеличения мощности звукового сигнала на выходе радиоприёмника электрические колебания звуковой частоты с выхода детектор поступают на вход усилителя низкой частоты.

Переменное напряжение звуковой частоты с выхода УНЧ подаётся на динамик.

Для усиления электрических колебаний высокой и низкой частот могут быть использованы схемы с электронными лампами или транзисторами.

Благодаря радиоволнам познается, и наша вселенная, и открываются элементарные частицы материи. Даже живые существа испускают радиоволны, а животные такие животные, как рыба молот используют их для охоты.

Библиография

1. Гаевой А. И., Калабухов Н. П., Левашова Л. Е., Чепуренко В. Г. «Справочник по физике для поступающих в вузы». Киев, «Наукова Думка», 1986.

2. И. В. Савельев «Курс общей физики» том 2. Москва, «Наука», 1973.

3. Михайличенко Ю.П. «Двойное лучепреломление сантиметровых электромагнитных волн. Методические указания». Томск, 1986.

4. Першинзон Е.М., Малов Н.Н., Эткин В.С. «Курс общей физики. Оптика и атомная физика». Москва, Просвещение, 1981.

5. Физика 11 Г. Я. Мякишев Б. Б. Буховцев.

СОДЕРЖАНИЕ 1. Что такое радиоволны? 3 1.1. Радиоволны 3 1.2. Распростран

Открытие радиоволн дало человечеству массу возможностей. Среди них: радио, телевидение, радары, радиотелескопы и беспроводные средства связи. Всё это облегчало нам жизнь. С помощью радио люди всегда могут попросить помощи у спасателей, корабли и самолёты подать сигнал бедствия, и можно узнать происходящие события в мире.

Создание электромагнитных волн опытным путём принадлежит физику Герцу. Для этого Герц использовал высокочастотный искровой разрядник (Вибратор). Произвёл этот опыт Герц в 1888 г. Состоял вибратор из двух стержней, разделённых искровым промежутком. Экспериментировал Герц с волнами частотой 100000000 Гц. Вычислив собственную частоту электромагнитных колебаний вибратора, Герц смог определить скорость электромагнитной волны по формуле υ=λν.Она оказалась приближенно равна скорости света: с=300000 км/с.

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т.п.).
Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.
Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей. Измеряется частота в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны. Длина волны (в метрах) рассчитывается по формуле: или примерно где ¦ – частота электромагнитного излучения в МГц.

Самый простой случай - это распространение радиоволны в свободном пространстве. Уже на небольшом расстоянии от радиопередатчика его можно считать точкой. А если так, то фронт радиоволны можно считать сферическим. Если мы проведем мысленно несколько сфер, окружающих радиопередатчик, то ясно, что при отсутствии поглощения энергия, проходящая через сферы, будет оставаться неизменной. Ну, а поверхность сферы пропорциональна квадрату радиуса. Значит, интенсивность волны, т. е. энергия, приходящаяся на единицу площади в единицу времени, будет падать по мере удаления от источника обратно пропорционально квадрату расстояния.

Как распространяются радиоволны

Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.
Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота). Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.
Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи.
Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.

Диапазон

С учётом особенностей распространения, генерации и (отчасти) излучения весь диапазон радиоволн принято делить на ряд меньших диапазонов: сверхдлинные волны, длинные волны, средние волны, короткие волны, метровые волны, дециметровые волны, сантиметровые волны, миллиметровые волны и субмиллиметровые волны (табл. 1). Деление радиочастот на диапазоны в радиосвязи установлено международным регламентом радиосвязи (табл. 2). Все это официальные, четко отграниченные участки спектра.
В то же время термин "диапазон" в зависимости от контекста может применяться для обозначения какого-то произвольного участка радиоволн/радиочастот (например - "любительский диапазон", "диапазон подвижной связи", "диапазон low band", "диапазон 2,4 ГГц" и т.п.)

Табл. 1. - Деление всего диапазона радиоволн на меньшие диапазоны.

Табл. 2.1. - Диапазон радиочастот

Наименование диапазона Границы диапазонов
основной термин параллельный термин
1-й диапазон частот
2-й диапазон частот
3-й диапазон частот
4-й диапазон частот
5-й диапазон частот
6-й диапазон частот
7-й диапазон частот
8-й диапазон частот
9-й диапазон частот
10-й диапазон частот
11-й диапазон частот
12-й диапазон частот
Крайне низкие КНЧ
Сверхнизкие СНЧ
Инфранизкие ИНЧ
Очень низкие ОНЧ
Низкие частоты НЧ
Средние частоты СЧ
Высокие частоты ВЧ
Очень высокие ОВЧ
Ультравысокие УВЧ
Сверхвысокие СВЧ
Крайне высокие КВЧ
Гипервысокие ГВЧ
3-30 гц
30-300 гц
0,3-3 кгц
3-30 кгц
30-300 кгц
0,3-3 Мгц
3-30 Мгц
30-300 Мгц
0,3-3 Ггц
3-30 Ггц
30-300 Ггц
0,3-3 Тгц

Табл. 2.2 . - Диапазон радиоволн

Динамический диапазон
Динамический диапазон радиоприемного устройства - это отношение максимально допустимого уровня принимаемого сигнала (нормируется уровнем нелинейных искажений) к минимально возможному уровню принимаемого сигнала (определяется чувствительностью устройства) выраженное в децибелах. Другими словами - это разность между максимальным и минимальным значениями уровней сигналов, при которых еще не наблюдается искажений. Причиной этих искажений является нелинейность усилительного тракта рассматриваемого устройства. Чем шире ДД, тем более сильные сигналы способно принимать устройство без искажений. Динамический диапазон шире у дорогих приемников, хотя сравнивать их по этому параметру практически невозможно, т.к. он очень редко указывается в характеристиках.

Распределение спектра

Радиоволны (радиочастоты), используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн. За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи. После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой. Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются. Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:

Источники

Радиоизлучение Солнца. Зарегистрировано радиоизлучение Солнца с длиной волны от нескольких миллиметров до 30 м. Особенно сильно излучение в метровом диапазоне; оно рождается в верхних слоях атмосферы Солнца, в его короне, где температура порядка 1 млн. К. Коротковолновое излучение Солнца относительно слабо; оно выходит из хромосферы, расположенной над видимой поверхностью Солнца – фотосферой.

длиной волны.

f (частота) = с (скорость света) / λ (длина волны)

Радиочастоты

№ диап Назв. волны Дл. волны Частота Назв. частоты
Мириаметр. СДВ 100км…10км 3кГц…30кГц ОНЧ(оч.низ.част.)
Километр. ДВ 10км…1км 30кГц…300кГц НЧ
Гектометр. СВ 1км…100м 300кГц…3МГц СЧ(сред.)
Декаметр.КВ 100м...10м 3МГц…30МГц ВЧ(высок.)
Метр. УКВ 10м...1м 30МГц…300МГц ОВЧ(оч.выс.)
Дециметр. УКВ 1 м…10см 300МГц…3ГГц УВЧ(ультравыс.)
Сантиметр. УКВ 10см…1см 3ГГц…30ГГц СВЧ(сверхвыс.)
Миллиметр. УКВ 1см…1мм 30ГГц…300ГГц КВЧ(крайневыс.)
Децимиллиметр. УКВ 1мм…0,1мм 300ГГц…3ТГц

Распространение УКВ волн


Классификация радиоволн по диапазонам.

Радиоволны харак-тся длиной волны и частотой колебаний, использ. для их получения. В зависимости от длины волн измен. особен. распростр. и использ. радиоволн, поэтому весь спектр радиоволн подразд. на 9 отдель. диапаз., названия кот. даны по длинам волн.

ДВ В нач. своего развития РС велась почти исключ. на таких волнах. Но для связи на большие расс-ия при, помощи этих волн нужны передатчики огромной мощности. Кроме того, в диапаз. ДВ невозможна одноврем. работа большого числа радиостанций (без помех 10 станций). Единст. достоинством ДВ явл. то, что дальность их действия в течение дня и ночи, лета и зимы меняется мало. Такого постоянства у др. радиоволн нет. Сейчас на ДВ раб. небольшое число радиостанций, передающих сигналы точного времени и метеорологические сводки.

СВ. На этих волнах можно разместить без взаим. помех 150 РВ-ных станций. Приходится одну и ту же волну давать несколь. станциям, что приводит к взаим. помехам. Только в случае если станции, работающие на одинак. волнах, расположены на значит. расстоянии одна от другой, то взаим. помехи сказыв. слабо или их вовсе нет. В диапаз. СВ также раб. телеграф. радиостанции: морские, авиационные, военные.

КВ. На КВ раб. ведомствен. телеграф. и телефон. радиостанции. В диапаз. КВ можно разместить без взаим. помех 3000 РВ-ных станций, а радиотелеграф. станций гораздо больше, т.к. для них треб. более узкая полоса частот. КВ дают огромную дальность действия по сравнению с др. волнами при относит. небольшой мощности передатчиков. Недостатком КВ явл. сильная зависим. их распростр. от времени суток и времени года. В наст. время на КВ раб. множество радиостанций всех стран мира, в частности, РВ-ные и радиолюбительские станции.

УКВ волны занимают диапазоны метр., дециметр., сантиметр., миллиметр. и децимиллиметр. волн. УКВ, назыв. иначе УВЧ или СВЧ, прим. для связи наземных радиостанций при сравнит. небольших расстояниях. В УКВ диапаз. можно разместить очень много радиостанций без взаим. помех. УКВ можно излучать узким пучком, в определ. направлении, подобно лучам прожектора, что позволило успешно применить их в радиолокации. В наст. время УКВ широко использ. для связи, радиолокации, радионавигации и в др. обл. науки и техники.

В диапаз. №4 с примен. АМ можно организ. только 3-х канальную ТЛФ радиолинию. В этом диапаз. нельзя организ. высококачествен. передачу даже 1-го канала вещания. Поэтому для этих целей использ. диапаз. волн с более высок. №. Для ТВ вещания №8, для РВ №5 и выше и т.д., а для организ. многоканаль. радиолинии обычно использ. диапаз. УКВ (8 диапаз.и выше). Поскольку РРЛ явл. многоканаль. радиолинией, то и несущие частоты выбирают в диапаз. УКВ.

Принципы радиосвязи.

Высокочастот. эл.маг. волна хорошо распростр. в пространстве, а низкочастот. сигналы голоса и музыки нет. Таким образом в радио сигналы голоса и музыки модулируют высокочастот. несущую в несколько сотен кГц, и этот модулирован. высокочастот. сигнал затем передается.

Модуляция это процесс, при кот. высокочастот. волна использ. для переноса низкочастот. волны.

На приемнике эта модулирован. высокочастот. волна демодулируется для получ. изначальных сигналов голоса и музыки. Сущест. 3 параметра несущей, которые можно изменять: амплитуда, частота и фаза. И, соответственно модуляции: амплитудная, фазовая, частотная.

На 1 граф. представл. измен. давления воздуха Р 1 около микрофона. На 2 граф. показыв. соответствующее изменение тока I 1 в микрофоне. На 3 граф. показано измен. радиочастоты I 2 , который затем создает эл.маг. волны. Колебания радиочастоты в системах РС служат переносчиком сигнала и назыв. несущими колебаниями. Управление несущими колебаниями по закону передаваемого электрич. сигнала назыв. модуляцией. Получаемые при помощи модуляции радиочастот. колебания, несущие в себе сообщение назыв. модулирован. колебаниями (граф. 3). Модулирован. радиочастот. колебания назыв. радиосигналом. Радиосигнал преобразуется в эл.маг. волны, кот. излучаются передатчиком посредством передающей антенны. Радиоволны распростр. в пространстве и достигают пункта приема. Радиоволны воздейст. на прием. антенну, в результ. чего в радиоприемнике возникает ток радиочастоты I 3 (граф. 4), подобный передаваемым колебаниям. Поскольку в место приема попадает очень малая часть излученной передатчиком энергии, ток I 3 в сотни млн. раз слабее токов I 2 и непосредственно использ. не может. Он должен быть усилен и подвергнут преобразованию. На граф. 5 показана сила тока I 4 . Этот ток пропускается ч/з телефон или громкоговоритель, в результ. чего он вызывает давление воздуха Р 2 . Получаются звук. колебания и воспроизвод. переданное сообщение. Обратная модуляция преобразования модулирован. колебаний в исходный электрич. сигнал назыв. детектирование (демодуляция).

Фидеры и волноводы.

Электрич. цепь и вспомогат. устройства, с помощью которых энергия радиочаст. канала подводится от радиоПРД к антенне или от антенны к радиоПР, назыв. фи­дером .

Фидеры – это линии питания, которые передают энергию от генератора к антенне (в передающем режиме) или от антенны к ПР (в режиме приёма). Основ. требования к фидеру сводятся к его электрогерметичности (отсутствию излучения энергии из фидера) и малым тепловым потерям. В передающем режиме волновое сопротивление фидера должно быть согласовано с входным сопротивлением антенны (что обеспечивает в фидере режим бегущей волны) и с выходом ПРД-ка (для max-ой отдачи мощности). В приёмном режиме согласование входа ПР-ка с волновым сопротивлением фидера обеспечивает в последнем режиме бегущей волны, согласование же волнового сопротивления фидера с сопротивлением нагрузки – условие max-ой отдачи мощности в нагрузку ПР-ка. В зависим. от диапаз. радиоволн примен. различные типы фидеров: двух или много-проводные воздушные фидеры; волноводы прямоугольного, круглого или эллиптического сечений; линии с поверхностной волной и др. Конструкция фидера зависит от диапазона передаваемых по нему частот. При передаче эл.маг. энергии по линии стре­мятся уменьш. излучение самой линии. Для этого провода линии располаг. //-но и по возмож­. ближе друг к другу. При этом поля 2-х одинак. по значе­нию, но противоположно направленных токов взаимно компенсируют­ся и излучения энергии в окружающее пространство не происходит. При создании антенны ставится противоположная задача: получение возможно большего излучения. Для этого использ. те же длинные линии, устранив одну из причин, лишающих фидер излу­чающих св-тв. Можно, например, раздвинуть провода линии на не­который ے, в результате чего их поля не будут компенсировать друг друга. На этом основана раб. V-образных и ромбических ан­тенн, излучающие провода кот. располож. под острым ے один к другому, и симметричного вибратора, полу­чающегося при разведении проводов на 180°. Компенсирующее действие одного из проводов фидера можно устранить, исключив его из с-мы. Это приводит к по­луч. несимметрич. виб­ратора. Все антен­ны, использ. этот принцип работы, относятся к классу не­симметрич. антенн. К ним также принадл. Г-образные и Т-образные антенны. Фидер излучает, если соседние участки его двух проводов обтека­ются токами, совпадающими по фазе, поля которых усиливают друг друга. Для этого необходимо создать фазовый сдвиг в половину дли­ны волны, например за счет неизлучающего шлейфа. На таком принципе основаны синфазные антенны. Фидер будет излучать, если расс-ия м/у проводами по неко­торым направлениям приобретают значит. разность хода. Можно так подобрать расс-ие м/у проводами, что по некоторым направлениям произойдет сложение волн от обоих прово­дов. Это использ. в противофазных ан­теннах.

Волновод – искусствен. или естествен. канал, способный поддерживать распространяющиеся вдоль него волны, поля которых сосредоточены внутри канала или в примыкающей к нему области. Типы волноводов:

1) Экранированные. Различают экранир. волноводы с хорошо отражающими стенками, к кот. относят волноводы металлические, направляющие эл.маг. волны, а также коаксиальные и многожильные экранирован. кабели, хотя последние обычно относят к линиям передачи (длинным линиям). К экранир. волноводам относят также волноводы акустические с достаточно жёсткими стенками.

2) Неэкранированные. В открытых (неэкранир.) волноводах локализация поля обычно обусловлена явлением полного внутрен. отражения от границ раздела 2-х сред (в волноводах диэлектрических и простейших световодах) либо от областей с плавно изменяющимися параметрами среды (ионосферный волновод, атмосферный волновод, подводный звук. канал). К открытым волноводам принадл. и с-мы с поверхност. волнами, направляемыми границами раздела сред.

Основ. св-во волновода – существ. в нём дискретного (при не очень сильном поглощении) набора нормальных волн (мод), распространяющихся со своими фазовыми и групповыми скоростями. Почти все моды облад. дисперсией, т.е. их фазовые скорости зависят от частоты и отлич. от групповых скоростей. В экранир. волноводе фазовые скорости обычно превыш. скорость распространения плоской однородной волны в заполняющей среде (скорость света, скорость звука), эти волны назыв. быстрыми. При неполном экранировании они могут просачиваться сквозь стенки волновода, переизлучаясь в окружающее пространство. Эти волны назыв. утекающими. В открытых волноводах распростр. медленные волны, амплитуды кот. быстро убывают при удалении от направляющего канала.

Звуковое радиовещание (ЗВ). Возникновение и развитие ЗВ в РФ.

С-ма ЗВ представл. собой организа­ционно-технич. комплекс, обеспечивающий формирование и пе­редачу звук. информации общего назнач. широкому кругу тер­риториально рассредоточенных абонентов (слушателей).

Первые опыты по передаче с помощью радио сигналов 3В проводились еще в начале XX столетия. С 1924г. началось регулярное AM звукового вещания и интенсивное строительство РВ станций AM вещания. Первые РВ станции раб. в диапаз. ДВ и использ. амплитудную модуляцию (АМ). Узкая полоса частот и взаимные помехи м/у станциями, использующими один и тот же частотный канал, не позвол. обеспеч.ь прием вещательных программ с высоким качеством. Устранить помехи можно было путем повыш. стабильности частоты РВ станций, сниж. уровней внеполосных излучений и улучш. избирательности ПР-ов. Для повыш. эффективности использования радиочастот. спектра в сетях AM вещания в начале 30-х гг. начал. исследования вопросов создания синхронных сетей 3В, в кот. все передающие станции сети, обслуживающие определ. терр-ию, работают на одной частоте с весьма высокой стабильностью и передают одну и ту же программу. В СССР синхрон. сети в диапаз. средних частот (СЧ) начали создав. в 1950г. Использование синхрон. сетей позволяло примен. в них маломощные ПРД-ки и исключить в темное время суток нелинейные и частотные искажения в зонах интерференции земного и пространст. луча. Заметно повышалась также и надежность вещания. В 1946г. начало развиваться частотно-модулированное (ЧМ) радиовещание в СССР, т.к. в сетях ЧМ вещания обеспечив. более высокое качество приема вещатель. сигналов и более просто решаются вопросы обеспечения их эл.маг. совместимости. В с-мах ЧМ вещания расширялась полоса частот передаваемых вещатель. сигналов. С 40-х гг. в диапаз. МВ (очень высокие частоты – ОВЧ) начинается создание сетей ЧМ вещания. Одним из путей повыш. качества РВ было создание стереофонич. с-м, в кот. достигается большая естественность звучания музыкальных программ. В стереос-мах для передачи по каналу связи формируются сигналы в двух разнесенных в пространстве микрофонах. Необходимая полоса частот канала связи для этих с-м шире, чем для AM вещания и поэтому организация стереовещания началась в сетях ОВЧ-ЧМ вещания. В 1955г. началась опытная передача стереофонич. программ по радио. В 1963г. была внедрена с-ма звукового стереофонич. вещания с полярной модуляцией. В конце 60-х гг. начинается внедрение цифровых методов передачи с помощью импульсно-кодовой модуляции (ИКМ) сигналов вещания по спутниковым трактам распределения программ 3В. В 70-х гг. началось внедрение синхронного вещания и азработка квадрафонических аналоговых с-м вещания. В 80-х гг. началась разработка и экспериментальные исследования с-мы наземного цифрового вещания. С конца XX в. совершенствование с-м вещания идет по пути разработки цифровых с-м, в которых может быть обеспечено весьма высокое качество воспроизведения речи и музыки. Цифровые РВ с-мы позволяют создавать сети вещания с высокой эффективностью использования радиочастотного спектра. В первом десятилетии XXI в. в сетях вещания во многих странах осуществлен переход от аналоговых с-м к цифровым.

Структурные элементы с-мы ПВ. Узел ПВ (УПВ), радиотрансляционный узел (РТУ). Преимущества с-мы ПВ.

ПВ – с-ма, сост.из ком­плекса аппаратуры и сооружений, с помощью кот.сигналы ЗВ распред.по проводным сетям и поступ.к слушателям. Основ.структур.элемент с-мы ПВ – УПВ или РТУ. УПВ содер­.комплекс оборуд-я для приема, преобразов., усиления и передачи по проводам программ ЗВ. Оборуд-е узла сост.из станцион.оборуд-я, ли­нейных сооруж. и абонент.устройств (АУ ).

Станц.оборуд-е обеспеч.получ.мощности, необход.для норм.работы всех АУ. Осн.элементами станц.оборуд-я узлов 1-програм.вещания явл.усилители звук.частоты, а узлов 3-хпрограм.вещания – еще и передатчики. К станц. оборуд-ю относ.аппаратура регулирования передаваемых сигналов, контроля, управления, коммутации и элек­тропитания.

Совокупность линейных сооруж.образ.сеть ПВ или РТС. Она сост.из с-мы 2-хпроводных линий и вспомогат.устр-в, с помощью кот.энергия сигналов ЗВ перед.от усилите­лей и передатчиков к АУ.

АУ явл.абонент.громкого­в-ли для 1-програм.сетей и 3-хпрограм.громкогов-ли для сетей 3-хпрограм.вещания. 3-хпрограм.громкогов-ль явл.комбинацией абонент.громкогов-ля с приемником высокочаст.сигналов 2-ой и 3-ей программ.

С-ма ПВ в нашей стране развив.как 1-програм. При разраб. 3-хпрограм.с-мы ПВ прим.организация многопрограм.вещания с частотным раздел.каналов на базе сети 1-програм.ПВ. Одна программа передается сигналами в полосе звук.частот 50-10000Гц. Для передачи 2-х др.программ использ.токи высокой частоты. Многопрограм.ПВ можно организ.в спектре звук.частот или путем переноса спектра в высокочаст.область. В 1-ом случае сигналы программ перед.по многопарной линии в полосе звук.частот, во 2-ом – в многоканаль.с-­ме передачи использ. частотное раздел.каналов. Сущ.с-мы многопрограм. ПВ по телефон.сетям. Также с-му ПВ можно организ.и на базе ТВ-ой распределит.сети. Возможно дальней.развит. сетей ПВ будет основ.на созд.совмещенных с-м, в кот.будут использ.кабельные коммуникации ГТС и проводного ТВ.

Преимущества с-мы ПВ:

1)Отсут.по­мех, ухудшающих качество радиоприема в диапаз.ДВ, СВ, KB и MB. Это помехи атмосфер.и промыш.происхожд., помехи от др. станций, работающих в совмещенном частот.канале. В диапаз.МВ существенны помехи, вызван.отра­ж. радиоволн от многоэтажных зданий со стальным или желе­зобетонным каркасом.

2)Экономические показатели ПВ , чем РВ. Передача энергии сигналов с помощью линий ПВ уменьш.потери энергии. Расход материала на изготовл.АУ ПВ меньше расхода материалов на изготов­л.радиоприемника. Удель.капиталь.затра­ты на строительство усилителя ПВ, меньше удель.капиталь.затрат на строительство передающих радиовещат.центров, а удель.расход электроэнергии меньше аналогичного показателя для индивидуаль. радиоприемника, т.к. КПД оконечных усили­телей ПВ много больше КПД радиовещат.передатчиков.

3)АУ ПВ проще в обращении, надежнее и дешевле радиоприемника. Расходы абонента ПВ на электропитание АУ незначит.или вообще отсут.

4)Качество воспроизведения вещатель.программы абонент­.устройством ПВ выше, чем качество воспроиз­ведения массовым радиоприемником.

5)Кол-во вещатель.программ, передаваемых в пределах заданной терр-ии, ограничено из-за недостатка радиоканалов. Использ.с-м ПВ позвол.увелич. число программ.

6)С помощью с-мы ПВ легко организовать местное вещание в пределах одного нас.пункта.

7)С-ма ПВ явл.хорошим средством оповещ. населения о стихийных бедствиях, т.к. она всегда готова к действию.

Преимущества ПВ привели к тому, что оно продолжает успешно раз­виваться.

Диапазоны радиоволн. Длина волны. Радиочастоты. Особенности распространения радиоволн различной длины.

Радиоволны харак-тся длиной волны и частотой колебаний, используемых для их получения. Растоян., на кот. распростр. волна за время одного колебания тока в антенне, назыв. длиной волны.

λ (длина волны) = с (скорость света 3*10 8) / f (частота)

Длина волны зависит от частоты колебаний (или периода колебаний Т) тока в антенне. Чем больше частота тока в антенне, тем меньше длина излучаемых радиоволн, и наоборот. Зная длину волны, нетрудно вычислить частоту тока в антенне.

f (частота) = с (скорость света) / λ (длина волны)

В зависим. от длины радиоволн измен. особен. их распростр. и использ., поэтому весь спектр радиоволн разбивают на отдель. диапаз., имеющие неодинаковые св-ва.

Радиочастоты – частоты или полосы частот в диапазоне 3кГц–3000ГГц, которым присвоены условные наименования. Этот диапазон соответ. частоте перемен. тока электрич. сигналов для вырабатывания и обнаруж. радиоволн. Ра­диоспектр подразд. на 9 диапаз.

№ диап Назв. волны Дл. волны Частота Назв. частоты
Мириаметр. СДВ 100км…10км 3кГц…30кГц ОНЧ(оч.низ.част.)
Километр. ДВ 10км…1км 30кГц…300кГц НЧ
Гектометр. СВ 1км…100м 300кГц…3МГц СЧ(сред.)
Декаметр.КВ 100м...10м 3МГц…30МГц ВЧ(высок.)
Метр. УКВ 10м...1м 30МГц…300МГц ОВЧ(оч.выс.)
Дециметр. УКВ 1 м…10см 300МГц…3ГГц УВЧ(ультравыс.)
Сантиметр. УКВ 10см…1см 3ГГц…30ГГц СВЧ(сверхвыс.)
Миллиметр. УКВ 1см…1мм 30ГГц…300ГГц КВЧ(крайневыс.)
Децимиллиметр. УКВ 1мм…0,1мм 300ГГц…3ТГц

Радиоволны, излучаемые антенной, распространяются вдоль земной поверхности (поверх. радиоволны) и под углом к горизонту (пространст. радиоволны).

Распространение мириаметровых и километровых волн (сверх­длинных и длинных) хорошо огибают поверхности, значительно поглощается земной поверхностью. Недостаток: большой уровень атмосферных помех и невозможность размещения в этих диапазонах большого числа каналов связи.

Распространение гектометровых (средних) волн Ограниченная дальность распространения, увеличивается в ночное время. Недостаток: большой уровень атмосферных и промышленных помех.

Распространение декаметровых (коротких) волн Сильно погращаются поверхностью земли. Является экономичным способом дельней связи, позволяют осущетвлять связь на большие растояния. Недостаток: наличие замираний и образование зоны молчания.

Распространение УКВ волн Не отражаются от ионосферы, явления дифракции практически не наблюдается. В нижних слоях атмосферы происходит сильное затухание УКВ (затух. с ↓ длины волны). Распростаняются значительно дельше прямой видимости

С частоты ухудш. дифракция (огибание) радиоволнами препятствий. Хорошо огиб. землю СДВ и ДВ. Дифракция на КВ не играет заметной роли, т.к. эти волны поглощ. раньше, чем станет ощутимой кривизна земли. УКВ ди­фракция практич. не свойст. и они не могут огибать вы­пуклости земной поверх. СВ отлич. боль­шим уровнем атмосфер. и промыш. помех.