Полупроводниковые резисторы (датчики проникающих излучений) изготовляют на основе пленок из поликристаллических материалов - сульфида кадмия, селенида кадмия и др. - путем возгонки в вакууме и осаждения полупроводниковой пленки на металлическую подложку, которая является одним из выводов. Второй вывод наносится поверх полупроводникового слоя также напылением в вакууме.

Полупроводниковые резисторы характеризуются большим положительным ТК. Температурная зависимость сопротивления обусловлена двумя процессами - генерацией носителей заряда и уменьшением подвижности их с ростом температуры.

Классификация и условное обозначение полупроводниковых резисторов

  • · линейные резисторы;
  • · нелинейные резисторы:
  • · варисторы -- сопротивление зависит от приложенного напряжения;
  • · терморезисторы -- сопротивление зависит от температуры;
  • · фоторезисторы -- сопротивление зависит от освещённости;
  • · тензорезисторы -- сопротивление зависит от деформации резистора;
  • · магниторезисторы -- сопротивление зависит от величины магнитного поля;
  • · Переменный резистор (реостат);
  • · Подстроечный резистор.

Линейный резистор - полупроводниковый прибор, в котором обычно используется слаболегированный кремний или арсенид галлия. Удельное сопротивление такого полупроводника мало зависит от напряжённости электрического поля и плотности электрического тока. Поэтому сопротивление линейного резистора практически постоянно в широком диапазоне изменения напряжений и токов. Линейные резисторы нашли широкое применение в интегральных микросхемах.

Нелинейными называются резисторы, сопротивление которых изменяется в зависимости от значения, приложенного напряжения или протекающего тока. Так, сопротивление осветительной лампы накаливания при отсутствии тока в 10--15 раз меньше, чем при нормальном горении. К нелинейным элементам относятся многие полупроводниковые приборы.

Варистор -- полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольтамперной характеристикой и имеющий два вывода. Обладает свойством резко уменьшать свое сопротивление с десятков и (или) тысяч Ом - до единиц Ом при увеличении приложенного к нему напряжения выше пороговой величины. При дальнейшем увеличении напряжения сопротивление уменьшается ещё сильнее. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений (УЗИП).

Свойства

Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов. Один из основных параметров варистора -- коэффициент нелинейности -- определяется отношением его статического сопротивления к динамическому сопротивлению:

где и -- напряжение и ток варистора.

Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.

Температурный коэффициент сопротивления варистора -- отрицательная величина.

Терморезистор -- полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от его температуры.

Терморезистор был изобретён Самюэлем Рубеном (Samuel Ruben) в 1930 году.

Терморезисторы изготавливаются из материалов с высоким температурным коэффициентом сопротивления (ТКС), который обычно на порядки выше, чем ТКС металлов и металлических сплавов.

Резистивный элемент терморезистора изготавливают методом порошковой металлургии из оксидов, галогенидов, халькогенидов некоторых металлов, в различном конструктивном исполнении, например, в виде стержней, трубок, дисков, шайб, бусинок, тонких пластинок, и размерами от 1--10 микрометров до нескольких сантиметров.

Терморезисторы способны работать в различных климатических условиях и при значительных механических нагрузках. Однако, с течением времени, при жёстких условиях его эксплуатации, например, термоциклировании, происходит изменение его исходных термоэлектрических характеристик, таких как:

  • · номинального (при 25 °C) электрического сопротивления;
  • · температурного коэффициента сопротивления.

Также существуют комбинированные приборы, такие как терморезисторы с косвенным нагревом. В этих приборах в одном корпусе совмещены терморезистор с гальванически изолированным нагревательным элементом, задающего температуру терморезистора, и, соответственно, его сопротивление. Такие приборы могут использоваться в качестве переменного резистора, управляемого напряжением, приложенным к нагревательному элементу такого терморезистора. Температура рассчитывается при помощи уравнения Стейнхарта -- Харта:

Фоторезистор -- полупроводниковый прибор, изменяющий величину своего сопротивления при облучении светом. Не имеет p-n перехода, поэтому обладает одинаковой проводимостью независимо от направления протекания тока.

Для изготовления фоторезисторов используют полупроводниковые материалы с шириной запрещенной зоны, оптимальной для решаемой задачи. Так, для регистрации видимого света используются фоторезисторы из селенида и сульфида кадмия, Se. Для регистрации инфракрасного излучения используются Ge (чистый или легированный примесями Au, Cu или Zn), Si, PbS, PbSe, PbTe, InSb, InAs, HgCdTe, часто охлаждаемые до низких температур. Полупроводник наносят в виде тонкого слоя на стеклянную или кварцевую подложку, или вырезают в виде тонкой пластинки из монокристалла. Слой или пластинку полупроводника снабжают двумя электродами и помещают в защитный корпус.

Важнейшие параметры фоторезисторов:

  • · интегральная чувствительность -- отношение изменения напряжения на единицу мощности падающего излучения (при номинальном значении напряжения питания);
  • · порог чувствительности -- величина минимального сигнала, регистрируемого фоторезистором, отнесённая к единице полосы рабочих частот.

Тензорезисторы -- резистор, сопротивление которого изменяется в зависимости от его деформации. Тензорезисторы используются в тензометрии. С помощью тензорезисторов можно измерять деформации механически связанных с ними элементов. Тензорезистор является основной составной частью тензодатчиков, применяющихся для косвенного измерения силы, давления, веса, механических напряжений, крутящих моментов и пр.

При растяжении проводящих элементов тензорезистора увеличивается их длина и уменьшается поперечное сечение, что увеличивает сопротивление тензорезистора, при сжатии -- наоборот.

Принцип действия проиллюстрирован на анимированном изображении. Для наглядности на изображении величина деформации тензорезистора утрированно увеличена, как и изменение сопротивления. В реальности относительные изменения сопротивления весьма малы (менее ~10-3) и для их измерений требуются чувствительные вольтметры, прецизионные усилители или АЦП. Таким образом, деформации преобразуются в изменение электрического сопротивления проводников или полупроводников и далее -- в электрический сигнал, обычно сигнал напряжения.

Тензорезисторы используются в качестве первичных преобразователей в тензометрах и тензостанциях при измерениях механических величин (деформации, силы, крутящего момента, перемещения, также, для измерения давления в манометрах и пр.)

Реостат -- электрический аппарат, изобретённый Иоганном Христианом Поггендорфом, служащий для регулировки силы тока и напряжения в электрической цепи путём получения требуемой величины сопротивления. Как правило, состоит из проводящего элемента с устройством регулирования электрического сопротивления. Изменение сопротивления может осуществляться как плавно, так и ступенчато.

Изменением сопротивления цепи, в которую включен реостат, возможно достичь изменения величины тока или напряжения. При необходимости изменения тока или напряжения в небольших пределах реостат включают в цепь параллельно или последовательно. Для получения значений тока и напряжения от нуля до максимального значения применяется потенциометрическое включение реостата, являющего в данном случае регулируемым делителем напряжения.

Использование реостата возможно, как в качестве электроизмерительного прибора, так и прибора в составе электрической или электронной схемы.

Основные типы реостатов

  • 1. Проволочный реостат. Состоит из проволоки из материала с высоким удельным сопротивлением, натянутой на раму. Проволока проходит через несколько контактов. Соединяя с нужным контактом, можно получить нужное сопротивление.
  • 2. Ползунковый реостат. Состоит из проволоки из материала с высоким удельным сопротивлением, виток к витку натянутой на стержень из изолирующего материала. Проволока покрыта слоем окалины, который специально получается при производстве. При перемещении ползунка с присоединённым к нему контактом слой окалины соскабливается, и электрический ток протекает из проволоки на ползунок. Чем больше витков от одного контакта до другого, тем больше сопротивление. Такие реостаты применяются в учебном процессе. Разновидностью ползункового реостата является агометр , в котором роль ползунка выполняет колёсико из проводящего материала, двигающееся по поверхности диэлектрического барабана с намотанной на него проволокой.
  • 3. Жидкостный реостат, представляющий собой бак с электролитом, в который погружаются металлические пластины. Обеспечивается плавное регулирование. Величина сопротивления реостата пропорциональна расстоянию между пластинами и обратно пропорциональна площади части поверхности пластин, погруженной в электролит.
  • 4. Ламповый реостат. Состоит из набора параллельно включённых ламп накаливания. Изменением количества включённых ламп изменялось сопротивление реостата. Недостатком лампового реостата является зависимость его сопротивления от степени разогрева нитей ламп.

Подстроечный резистор -- переменный резистор, предназначенный для тонкой настройки радиоэлектронного устройства в процессе его монтажа или ремонта. Эти компоненты устанавливаются внутри корпуса устройства и недоступны для пользователя при нормальной эксплуатации.

Эл. цепь и ее элементы

Эл. цепь представляет собой совокупность устройств и объектов, образующих путь для эт-ов тока.

· 1Источники питания(гальванические элементы :

· аккумуляторы :, ГЕНЕРАТОРЫ, ФОТОЭЛЕМЕНТЫ)

· 2 Электорприемники (электродвигатели

3 Элементы для передачи(проводные уст-ва, и т. д)

Пассивные эл-ты: резистивный, индуктивный, емкостной.

Направление тока условно принимается от +к -.

Величина тока I=q(t) определяется величиной q, проходящего через поперечное сечение проводника в единицу времени.

Плотность тока - векторная физ. величина, имеющая смысл силы тока, протекающего через единицу площади.

ЭДС - скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока.

Где - элемент длины контура.

Электрич. сопротивление- физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.

Электрическая проводимость -способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению

5. Закон Ома для участка цепи:

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого проводника и обратно пропорциональна его сопротивлению:

Ом установил , что сопротивление прямо пропорционально длине проводника и обратно пропорционально площади его поперечного сечения и зависит от вещества проводника(формы, геометрических размеров и материала).

где (ро) - удельное сопротивление, l - длина проводника, S - площадь поперечного сечения проводника.

Закон Ома для полной цепи:

Силы тока в полной цепи прямопропорциональны действующей ЭДС и обратнопропорциональны полному сопротивлению цепи:

Где r –сопротивление источника тока

На схемах источники тока обозначаются:

Из закона Ома для полной цепи вытекают следствия:

· При r<

· При r>>R сила тока от свойств внешней цепи (от величины нагрузки) не зависит. И источник может быть назван источником тока.

Работа и мощность тока:

Электрическое поле, перемещающее заряды по проводнику, совершает работу. Эту работу называют работой тока.

Работа тока на участке цепи равна произведению силы тока, напряжению, времени прохождения тока по проводнику:

Где [А] = 1Дж(Джоуль)

Мощность тока – отношение работы тока за время ∆t к этому промежутку времени:

, где [P] = 1Вт(Ватт)

Условие получения максимальной мощности во внешней цепи.

Чтобы получить максимальную мощность, следует взять нагрузку с сопротивлением R, равным внутреннему сопротивлению источника.

6. Двухполюсные элементы электрической цепи.

Резистивный элемент – это идеализированный двухполюсный элемент, для которого связь между напряжением и током можно представить в виде вольт-амперной характеристики. Этот элемент моделирует процесс необратимого преобразования электромагнитной энергии в тепло и другие виды энергии, при этом запасание энергии в электромагнитном поле отсутствует.

Линейный резистор Нелинейный резистор

, (R-сопротивление, G-проводимость)

Источник напряжения – двухполюсный элемент, напряжение которого не зависит от тока. Внутреннее сопротивление идеального источника напряжения равно нулю, мощность такого источника бесконечна.

Вольт-амперная характеристика

Источник тока - двухполюсный элемент, ток которого не зависит от напряжения на его зажимах. Внутренняя проводимость идеального источника тока равно нулю, внутреннее сопротивление такого источника бесконечно велико, мощность также бесконечна.

Первый закон Кирхгофа

Данный закон применим к любому узлу электрической цепи.

Первый закон Кирхгофа - алгебраическая сумма всех токов, сходящихся в узле равна нулю.

Токи, наравленные к узлу, условно принимаются положительными, а направленные от него - отрицательными (или наоборот). На рисунке ниже изображен пример применения первого закона Кирхгофа для узла, в котором сходится 5 ветвей.

Более понятна для понимания другая формулировка первого закона Кирхгофа: сумма токов, направленных к узлу электрической цепи равна сумме токов, направленных от него.

Второй закон Кирхгофа

Данный закон применим к любому замкнутому контуру электрической цепи.

Второй закон Кирхгофа - в любом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений в отдельных сопротивлениях.

Для применения данного закона на практике, сначала необходимо выбрать замкнутый контур электрической цепи. Далее в нем произвольно выбирают направление обхода (по часовой стрелке, или наоборот). При записи левой части равенства ЭДС, направления которых совпадают с выбранным направлением обхода, принимаются положительными, в обратном случае - отрицательными. При записи правой части равенства положительными считают падения напряжения в тех сопротивлениях, в которых выбранное положительное направление тока совпадает с направлением обхода. В противном случае, падению напряжения следует присвоить знак "минус".

Активная мощность

Единица измерения - ватт (W, Вт).

Среднее за период T значение мгновенной мощности называется активной мощностью: В цепях однофазного синусоидального тока где U и I - среднеквадратичные значения напряжения и тока, φ - угол сдвига фаз между ними.

Реактивная мощность

Реактивная мощность - величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает - отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: .

1)Треугольник сопротивлений получается из треугольника напряжений. Треугольники напряжений и сопротивлений подобны. Длины сторон треугольника сопротивлений определяются путем деления соответствующих напряжений на значение тока. При ф О сторона треугольника jx направлена влево от катета г - преобладает индуктивное сопротивление, при ф 0 сторона треугольника - jx направлена вправо - преобладает емкостное сопротивление.

Треугольник сопротивлений дает графическую интерпретацию связи между модулем полного сопротивления z и активным и реактивным сопротивлениями цепи; треугольник проводимости - интерпретацию связи между модулем полной проводимости у и ее активной и реактивной составляющими.

Треугольники напряжений (а) и сопротивлений (б)

Треугольник сопротивлений можно получить, уменьшив в / раз стороны треугольника напряжений.

UL образуют у треугольник напряжений для активно-индуктивной нагрузки.

Умножив все стороны треугольника напряжений на величину тока /, получим треугольник мощностей, в котором QL - реактивная мощность индуктивности, a Qc-реактивная мощность емкости.

Если все стороны треугольника напряжений разделить на величину тока, то получится подобный треугольник - треугольник сопротивлений, где длина гипотенузы соответствует полному сопротивлению г -; катет - активному сопротивлению.

Полное сопротивление цепи.

При последовательном соединении полное сопротивление цепи равно сумме сопротивлений отдельных проводников(резисторов): R = R1 + R2.

При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников: 1/R = 1/R1 + 1/R2.

3) Угол сдвига фаз называется электрическим углом. Он, так же как и геометрический угол, измеряется в градусах или радианах.

Угол сдвига фаз между током в одной цепи и напряжением в другой равен 1 / 4 периода.

Угол сдвига фаз между током и напряжением при резонансе равен нулю.

Угол сдвига фаз между током и напряжением зависит от соотношения между активным и реактивным сопротивлениями, включенными в цепь.

Угол сдвига фаз между напряжением и током для каждой гармоники получается различным, так как с изменением порядкового номера активное сопротивление г не изменяется, а реактивное сопротивление xkk (uL - 1 / fecoC изменяется.

Угол сдвига фаз между током и напряжением определим из соотношения.

Полное сопротивление цепи

Определим угол сдвига фаз между напряжением источника и током в цепи:

arctg (xL - хсУг = arctg (3/4)

1)Реактивная мощность Q измеряется в вольт-амперах реактивных (вар), полная мощность S - в вольт-амперах (В·А)

Активная, реактивная и полная мощности связаны друг с другом соотношениями:

P = Scosφ; Q = Ssinφ

Из приведенных соотношений следует, что индуктивная цепь потребляет реактивную мощность: при отставании тока от напряжения φ > 0 и Q > 0. При емкостном характере цепи, наоборот, φ < 0 и Q < 0. Поэтому конденсаторы условно рассматривают как источники, а индуктивности - как потребители реактивной мощности. Реактивная мощность, таким образом, является характеристикой интенсивности обратимого обмена энергией между отдельными участками цепи, который является существенным при оценке потерь в соединительных проводах цепи.

Полная мощность S определяет амплитуду колебаний мгновенной мощности p(t). Активную, реактивную и полную мощности можно непосредственно определить по комплексным напряжению и току на участке цепи.

Мгновенная мощность переменного тока

Сдвиг фаз φ зависит от соотношения между активным и реактивными сопротивлениями и тем самым от частоты ω. Поскольку напряжение и ток в цепи изменяются с частотой ω, то при подсчете работы тока нужно рассматривать настолько малый промежуток времени Δt, чтобы значения напряжения и тока можно было считать постоянными: ΔA = I(t)U(t)Δt

Где U(t) = Uocosωt, I(t) = Iocos(ωt − φ).

Отсюда получается следующее выражение для мгновенной мощности тока:

P(t) = ΔA/Δt = I(t)U(t).

Подставив сюда значения I(t) и U(t) из (1), получаем P(t) = UoIocosωt cos(ωt − φ). (2)

Воспользовавшись тригонометрическим тождеством

сosα cosβ = (1/2),

перепишем в следующем виде: P(t) = (1/2)UoIo Для резистора P=UIcos0=UI=I^2R=(U^2)/R

На индуктивном элементе: P=UIcos(π/2)

На емкостном элементе: P=UIcos(-π/2)

Реактивная мощность – характеризует интенсивность обменного процесса в цепи переменного тока. Q=UIsinφ=[ВАр]

Полная мощность : S=[ВА]

Реактивная мощность

Единица измерения - вольт-ампер реактивный (var, вар)

Реактивная мощность - величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I , умноженному на синус угла сдвига фаз φ между ними: (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает - отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: .

Физический смысл реактивной мощности - это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = UI sin φ, реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную - то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.

Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sin φ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.

Полная мощность

Единица полной электрической мощности - вольт-ампер (V·A, В·А)

Полная мощность - величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U·I ; связана с активной и реактивной мощностями соотношением: где Р - активная мощность, Q - реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели,распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому номинальная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

ТРЕУГОЛЬНИК МОЩНОСТЕЙ - графическое изображение активной, реактивной и полной мощностей в цепи переменного тока.

Треугольник мощностей получается из соотношения Р 2 + Q 2 = S 2 .

Коэффицие́нт мо́щности - безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.

Численно коэффициент мощности равен косинусу этого фазового сдвига.

Для расчётов в случае гармонических переменных U (напряжение) и I (сила тока) используются следующие математические формулы:

Здесь - активная мощность, - полная мощность, - реактивная мощность.

43.1. Последовательное соединение активного, индуктивного и ёмкостного сопротивлений

При последовательном соединении активного r , индуктивного xL и ёмкостного xC

сопротивлений (рис.8 а) мгновенное значение напряжения источника согласно второму закону Кирхгофа определяется алгебраической суммой мгновенных значений напряжений на

отдельных элементах:

Если все эти напряжения представить в виде векторов на векторной диаграмме,

то действующее значение напряжения источника определяется, как векторная сумма

действующих значений напряжений на отдельных элементах и может быть рассчитано по

Учитывая, что по закону Ома

Тогда , - закон Ома,

где: - полное сопротивление цепи при последовательном соединении элементов.

Полное сопротивление цепи Z , активное r и реактивное образуют

треугольник сопротивлений, для которого справедливы следующие соотношения:

43.2. II закон Кирхгофа для мгновенных значений.

3)

Энергетический процесс.

Билет 47

Билет 48

Выражение тока, напряжения, сопротивления, проводимости, ЭДС электромагнитной индукции, мощности комплексными числами. Законы Ома и Кирхгофа в символическом виде .

Токи, напряжения в комплексной форме записи.

Синусоидальные величины можно изображать комплексными числами. комплексные значения тока, напряжения и ЭДС принято обозначать прописными буквами с точкой: I, U, Е, а их модули, соответствующие действующим значениям, обозначают теми же буквами, но без точек над ними: I, U, Е. Вернемся к цепям с последовательным соединением активного сопротивления и индуктивности, активного сопротивления и емкости. Векторная диаграмма первой цепи, построенная на комплексной плоскости, дана на рис. 14.3, а, а второй - на рис. 14.4, а. В обоих случаях вектор тока I направлен по оси действительных чисел вправо от начала координат. Поэтому комплекс тока I = Iе j0° = I, где I - модуль комплекса тока, а 0° - его начальная фаза.

Комплекс напряжения на зажимах цепи с последовательным соединением активного сопротивления и индуктивности U=U a +jU L =Ue , где U a и jU L - вещественная и мнимая части; U и ф - модуль и начальная фаза комплекса напряжения. Таким образом, комплексное изображение синусоидальной величины определяет ее действующее (амплитудное) значение и начальную фазу. Пусть ток в катушке I = 5 А, активное падение напряжения U a = 60 В, а индуктивное U L = 80 В. Тогда комплекс тока I=I= 5 А, а комплекс напряжения U= U a + jU L = 60 + j80. Для перехода от алгебраической формы к показательной найдем модуль комплекса напряжения: U = = 100 В и. tgф = Е= U L /U a = 80/60= 1,33. Значит, ф = 53°08". Поэтому комплекс напряжения U = 60 + j80= 100е j53°08" В.

Комплекс общего напряжения цепи с последовательным соединением активного сопротивления и емкости (рис. 14.4,а) U = U a - jU C =Ue -jф. Таким образом, в общем выражении комплекса напряжения перед мнимой частью ставятся знаки плюс, если она выражает индуктивное напряжение, и минус, если - емкостное. При последовательном соединении активного сопротивления, индуктивности и емкости комплекс общего напряжения цепи U = U a + jU L - jU C = Ua + j(U l - U c) = Ue jф. Модуль полученного комплекса U = , а его аргумент ф = arctg . При этом ф>0, если U L >U C , и ф<0, если U L В ряде случаев нулевую фазу приписывают не току, а напряжению. Тогда вектор напряжения и будет направлен по оси действительных чисел комплексной плоскости, а остальные векторы ориентируются относительно этого исходного вектора. При этом условии комплекс напряжения U = Ue j0° = U. Комплекс тока для цепей с последовательным соединением I= Iе -jф .

Сопротивления и проводимости в комплексной форме.

Сопротивления и проводимости можно выразить комплексными числами. Комплексное сопротивление цепи обозначается Z , a комплексная проводимость- Y . При обозначении комплексных величин принято ставить точки только над теми комплексами, которые изображают синусоидально изменяющиеся величины. Поэтому для комплексов полного сопротивления и проводимости вместо точки над буквой ставят черту снизу. Модуль комплексного сопротивления цепи обозначают г, а комплексной проводимости - у. Рассмотрим треугольники сопротивлений и проводимостей цепей с последовательным соединением активного сопротивления и индуктивности, расположенные на комплексной плоскости. Активные сопротивления и проводимости изображены положительными отрезками на оси действительных чисел, а реактивные - положительными или отрицательными на оси мнимых чисел. С учетом этого составим комплексы полных сопротивлений и проводимостей. Для цепей с последовательным соединением Z = r+jx L = ze jф, a Y =g - jb L = ye -jф, а для цепей с г и С Z = r - jx c = ze -jф , a Y = g + +jb С = уе jф . Модули и аргументы этих величин определяют по следующим формулам. Для цепей с последовательным соединением z = ; у = и ф = arctg , а для цепей с г и С z = ; y = и ф = arctg . При последовательном соединении элементов с активным, индуктивным x L и емкостным х С сопротивлениями Z = r+jx L - jx C = r+j(x L - x c) = zе jф . Модуль данного комплекса сопротивления z = , а его аргумент ф = arctg .

Выражение мощности в комплексной форме

Полная мощность цепи переменного тока равна произведению действующих значений напряжения и тока:

S = UI .

Казалось бы, выразив напряжение и ток в комплексной форме, можно получить комплексное значение полной мощности. Однако перемножение комплексных значений напряжения и тока не дает реальных полной, активной и реактивной мощностей цепи.

Комплексное значение полной мощности, отражающее реальные мощности в цепи, получится, если умножить комплексное значение напряжения на сопряженное комплексное значение тока:

S = UI *.

Сопряженное комплексное значение тока I * отличается от I знаком перед мнимой частью. Если комплексное значение тока I = еj ψ, то сопряженное ему комплексное значение I * = Iе-j ψ.

Покажем, что комплексное значение мощности отражает реальные мощности в цепи.

Допустим, что комплексные значения напряжения и тока какой-то цепи имеют выражения

U = Uej ψ1; I = Iej ψ2. .

Комплексное значение полной мощности

S = UI * = Uej ψ1Ie-j ψ2 = UIej (ψ1 - ψ2) = Sej φ.

Выразив комплексное значение полной мощности в тригонометрической, а затем в алгебраической форме, получим

S = S cos φ + jS sin φ = Р + jQ,

где S cos φ = P - активная мощность цепи; S sin φ = Q - реактивная мощность цепи;
S = р 2 +Q 2 - полная мощность.

Следует отметить, что при активно-индуктивном характере нагрузки (ψ1 > ψ2) знак перед jQ положительный, при активно-емкостном (ψ2 > ψ1) - отрицательный.

Законы Омы и Кирхгофа в комплексной форме

Проволочные резисторы

Основным элементом конструкций прово­лочных резисторов является проводящий элемент, состоящий из провода (изолированного или неизолированного), намотанного на изоляционный каркас.

Для обеспечения высоких эксплуатационных параметров проволочного резистора необходимо, чтобы проводящий материал обладал следу­ющими свойствами: высокой стабильностью удельного сопротивления во времени, малым температурным коэффициентом сопротивления, высокой корро­зионной устойчивостью, малой термо-ЭДС, способностью протягиваться в провод диамет­ром в десятые – сотые доли миллиметра. Комплексом перечисленных свойств обладают специальные сплавы на основе никеля, хрома, меди, марганца, а также сплавы на основе благородных металлов. Для изготовления проволочных резисторов используются сплавы никеля с хромом (Х15Н60, Х20Н80 и др.); медно-марганцевые и медно-никелевые сплавы (манганин и константан); палладиево-вольфрамовый сплав (80 % палладия, 20 % вольфрама); серебряно-палладиевый сплав (80 % серебра, 20 % палладия) и др. Более подробно проволочные резисторы описаны в учебной литературе /3/.

Непроволочные резисторы

К непроволочным резисторам постоянного сопротивления относятся углеродистые, металлопленочные, металлодиэлектрические, металлоокисные, полупроводниковые и пленочные композиционные. Рассмотрим некоторые особенности непроволочных рези­сторов различных типов.

Углеродистые резисторы . Резистивный элемент таких резисторов представляет со­бой тонкую пленку пиролитического углеро­да (толщиной в десятые доли микрометра), полученного путем разложения углеводородов при высокой температуре в вакууме или в среде инертного газа, и осажденную на изоляционное основание. В качестве ос­нований углеродистых резисторов исполь­зуются керамические стержни или трубки.

Углеродистые резисторы отличаются повышенной стабильностью параметров, низким уровнем шумов, небольшим отри­цательным температурным коэф­фициентом, малой зависимостью сопротив­ления от частоты электрического поля и приложенного напряже­ния. Углеродистые резисторы предназ­начены для работы в импульсных схемах. Полупрецизионные резисторы работают в том же диапазоне темпе­ратур, что и углеродистые резисторы БЛП. Высокочастотные углеродистые резисторы изготовляют в виде трубок, стержней, дисков, пластинок и т.п. Резисторы УНУ (углеродистые незащищенные ультравысокочастотные) рассчитаны на работу при температурах 210 – 400 К.

Резистив­ный элемент металлопленочных резисторов представляет собой очень тонкую (десятые доли микро­метра) токопроводящую пленку, осажден­ную на изоляционное основание, в качестве которого используют керамику, стекло, сло­истые пластики, ситаллы и другие матери­алы.

Наиболее распространенные постоян­ные металлопленочные резисторы – резисто­ры типа МЛТ – имеют резистивный слой из металлосилициевых сплавов, состоящих из нескольких компонентов. Эти резисторы имеют примерно в 2 – 3 раза меньшие раз­меры, чем углеродистые резисторы типа ВС (в обычном исполнении), имеющие такую же номинальную мощность, обладают боль­шей тепло- и влагостойкостью, более ста­бильны. Недостатком металлопленочных ре­зисторов типа МЛТ является их низкая на­дежность, особенно при импульсной нагрузке, в результате перегрева в местах микронеоднородностей.

Промышленность выпускает ряд метал­лопленочных резисторов: МЛТ – металло­пленочные лакированные теплостойкие, ОМЛТ – особые (с повышенной надеж­ностью) металлопленочные лакированные теплостойкие, МТ – металлопленочные теплостойкие с повышенной механической прочностью, МУН – металлопленочные ультравысокочастотные незащищенные и др.

Металлодиэлектрические резисторы – это резисторы по типу контактолов или керметов различного состава.

Металлоокисные резисторы . В качестве электропроводящего слоя в них используется окись металла, чаще всего двуокись олова, нанесенная на поверхность керамического стержня. Металлоокисные резисторы отличаются большим постоянством параметров при воздействии переменных факторов внешней среды, по сравнению с металлопленочными.

Полупроводниковые резисторы . Освоение промышленностью монокристаллических по­лупроводн

. Удельное сопротивление такого полупроводника мало зависит от напряжённости электрического поля и плотности электрического тока . Поэтому сопротивление линейного резистора практически постоянно в широком диапазоне изменения напряжений и токов. Линейные резисторы нашли широкое применение в интегральных микросхемах .

Литература

  • Основы промышленной электроники : Учебник для вузов/В. Г. Герасимов, О. М. Князьков, А. Е. Краснопольский, В. В. Сухоруков; Под ред. В. Г. Герасимова. – 2-е изд., перераб. и доп. – М.: Высшая школа, 1978.

Wikimedia Foundation . 2010 .

Смотреть что такое "Линейный резистор" в других словарях:

    линейный резистор - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN linear resistor …

    линейный переменный резистор - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN linear pot … Справочник технического переводчика

    ГОСТ 16110-82: Трансформаторы силовые. Термины и определения - Терминология ГОСТ 16110 82: Трансформаторы силовые. Термины и определения оригинал документа: 8.2. Аварийный режим трансформатора Режим работы, при котором напряжение или ток обмотки, или части обмотки таковы, что при достаточной… …

    - (фр. attenuer смягчить, ослабить) устройство для плавного, ступенчатого или фиксированного понижения интенсивности электрических или электромагнитных колебаний, как средство измерений является мерой ослабления электромагнитного… … Википедия

    В статье описаны некоторые типовые применения интегральных операционных усилителей (ОУ) в аналоговой схемотехнике. На рисунках использованы упрощенные схемотехнические обозначения, поэтому следует помнить, что несущественные детали (соединения с… … Википедия

    ГОСТ Р 52002-2003: Электротехника. Термины и определения основных понятий - Терминология ГОСТ Р 52002 2003: Электротехника. Термины и определения основных понятий оригинал документа: 128 (идеальный электрический) ключ Элемент электрической цепи, электрическое сопротивление которого принимает нулевое либо бесконечно… … Словарь-справочник терминов нормативно-технической документации

    - (сокр. РКСУ) комплекс электромеханического оборудования, предназначенного для регулирования тока в обмотках тяговых электродвигателей (ТЭД) подвижного состава метрополитена, трамвая, троллейбуса и железных дорог. Содержание 1 Принцип действия … Википедия

    Реостатно контакторная система управления (сокр. РКСУ) комплекс электромеханического оборудования, предназначенного для регулирования тока в обмотках тяговых электродвигателей (ТЭД) подвижного состава метрополитена, трамвая и троллейбуса.… … Википедия

    У этого термина существуют и другие значения, см. Стабилизатор. Стабилизатор напряжения преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при значительно больших колебаниях входного… … Википедия

Определение 1

Резистор - пассивный элемент электрических цепей, который обладает определённым или переменным значением электрического сопротивления, предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока и др.

Резисторы являются одними из наиболее распространенных компонентов в электрических цепях, большинство электронных устройств содержат их в большом количестве. Практические резисторы как дискретные компоненты могут состоять из различных соединений и форм. Резисторы также реализованы в интегральных схемах. Они изготовлены из различных химических веществ в виде компактных элементов, или в некоторых случаях - из витого проводника с большим удельным сопротивлением.

Замечание 1

Единица измерения электрического сопротивления резистора Ом, названная в честь немецкого физика Георга Симона Ома.

Типы резисторов

Существуют два основных типа резисторов.

  • Линейные резисторы
  • Нелинейные резисторы

Линейные резисторы.

Эти резисторы, у которых значения изменяются с приложенным напряжением и температурой, называются линейными резисторами. Другими словами, резистор, значение тока, которого прямо пропорционально приложенному напряжению известен как линейный резистор.

Замечание 2

Линейные резисторы делятся на фиксированные резисторы и переменные резисторы.

Фиксированные резисторы

Фиксированные резисторы на сегодняшний день, наиболее широко используемый тип резисторов. Они используются в схемах электроники, чтобы поставить правильные условия в цепи. Их значения определяются на этапе проектирования схемы, и они никогда не изменяются.

Фиксированные типы резисторов

Есть целый ряд различных типов фиксированных резисторов. На основе состава резисторы могут быть классифицированы следующим образом:

Углеродные композиционные резисторы

Типичный фиксированный резистор выполнен из смеси гранулированного или измельченного углерода или графита, изоляционного наполнителя, или смоляного связующего. Отношение изоляционного материала определяет фактическое сопротивление резистора. Изолирующий порошок, выполнен в виде стержней, и есть две металлические крышки на обоих концах стержня.

Есть два проводника на обоих концах резистора для соединения устройств в цепи с помощью пайки. Пластиковый слой покрывает стержни с различными цветовыми кодами (печатными буквами), которые обозначают величину сопротивления.

Проволочный резистор

Проволочный резистор выполнен из изоляционного сердечника или стержня, обернутый вокруг резистивной проволоки. Сопротивление проволоки представляет собой, как правило, вольфрам, манганин, нихром или хромовый сплав никеля или никель и изолирующий сердечник выполнен из фарфора, бакелита или керамического материала глины.

Тонкопленочные резисторы

В основном, все тонкие пленочные резисторы выполнены из высококачественного керамического стержня и резистивного материала. Очень тонкий проводящий слой материала накладывается на изолирующий стержень, пластину или трубку, которая сделана из высококачественного керамического материала или стекла.

Переменные резисторы

Как видно из названия, эти резисторы, значения которых могут быть изменены с помощью ручки, винта или вручную с помощью правильного метода. В этих типах резисторов, есть подвижная ручка, которая соединена с валом, и значение сопротивления можно изменить путем поворота рычага. Они используются в радиоприемниках для управления громкостью звука.

Примеры таких резисторов:

  • Потенциометры
  • Реостаты
  • Триммеры

Нелинейные резисторы

Известно, что нелинейные резисторы это резисторы, где ток, протекающий, через них не изменяется в соответствии с законом Ома, но, изменяется при изменении температуры или приложенного напряжения.

  • Варисторы - сопротивление зависит от приложенного напряжения;
  • Терморезисторы - сопротивление зависит от температуры;
  • Фоторезисторы - сопротивление зависит от освещённости;
  • Тензорезисторы - сопротивление зависит от деформации резистора;
  • Магниторезисторы - сопротивление зависит от величины магнитного поля.